
, 

I -  

Paper 
2422 
ea 

June 1985 
- 

-' . 

\ 

~. 

Red-Time Multiprocessor 
Programming Language 
i(RTMPL)- -. - , 



NASA 
Techn ica I 
Paper 
2422 

1985 

' National Aeronautlcs 
1 and Space Administration 

~ Scientific and Technical 
Information Branch 

Real-Time Multiprocessor 
Programming Language 

- 

(RTMPL) 

Users Manual 

Dale J. Arpasi 
Lewis Research Center 
Cleveland, Ohio 



Contents 
Chapter 

Summary ................................................................................................... 
Introduction ............................................................................................... 
Application to Multiprocessor Configurations .................................................... 

General Simulator Configuration .................................................................. 
Targeting ................................................................................................ 
Information Transfer ................................................................................. 
Past-Value Control .................................................................................... 

RTMPL Environment ................................................................................... 
Simulation Development System ................................................................... 
Source Translation .................................................................................... 

Simulation Structure ..................................................................................... 
Syntax Diagram and Basic Constructs ............................................................ 
Control Segment and File ............................................................................ 
Program Files .......................................................................................... 
Global Data Segment and File ...................................................................... 

Data Segments ............................................................................................ 
Data Attributes ........................................................................................ 
Variables ................................................................................................ 
Constants ................................................................................................ 
Global Constants ...................................................................................... 
Messages ................................................................................................. 

Argument Groups ..................................................................................... 
Execution Segment ....................................................................................... 

Executives ............................................................................................... 
Tasks ..................................................................................................... 
Statements .............................................................................................. 
Assignments ............................................................................................ 
Conditionals ............................................................................................ 
Expressions ............................................................................................. 
Commands .............................................................................................. 

RTMPL Simulation ...................................................................................... 
Description .............................................................................................. 
Mathematical Model .................................................................................. 
Model Partitioning and Allocation ................................................................ 
Model Translation to RTMPL ...................................................................... 
Example Source Files ................................................................................. 

RTMPL Listing ........................................................................................... 
Scan Listing ............................................................................................. 
Documentation Listing ............................................................................... 

Argument Specification .............................................................................. 

Using the RTMPL Utility ............................................................................... 

1 
1 
3 
3 
4 
5 
6 
8 
8 
8 

10 
10 
11 
13 
14 
15 
15 
16 
17 
17 
18 
18 
19 
20 
20 
21 
21 
22 
22 
23 
26 
31 
31 
31 
32 
34 
37 
44 
46 
46 
47 

iii 



9 RTMPL Object Files ..................................................................................... 50 
Assembler Source Files ............................................................................... 50 
Data-Base Files ......................................................................................... 53 

10 Concluding Remarks .................................................................................... 54 
Appendix A-Listing for Dual-Nozzle Simulation ................................................ 55 
Appendix B-Error and Warning Messages ........................................................ 86 
Appendix C-Assembler Source Files for Dual-Nozzle Simulation ........................... 90 
References .................................................................................................. 108 

iv 

. 



Summary 
The NASA Lewis Research Center is developing and 

evaluating experimental hardware and software systems 
to  help meet future needs for real-time, high-fidelity 
simulations of dynamic systems. Specifically, the Real- 
Time Multiprocessor Simulator (RTMPS) project focuses 
on the use of multiple microcomputers to  achieve the 
required computing speed and accuracy at relatively low 
cost. A real-time multiprocessor programming language 
(RTMPL) has been developed to  provide high-order 
language (HOL) programming of RTMPS systems. The 
RTMPL programming utility (translator) supports a 
variety of multiprocessor configurat ions and  
microcomputer types. The utility serves as an assembly 
language programmer. It translates the HOL source 
program for each RTMPS computer to a time-efficient 
assembler source program and sets up all data 
communication between the computers. 

This manual describes the RTMPL from a user's 
viewpoint. A programming example is presented to 
illustrate the use of the RTMPL utility to program an 
RTMPS system consisting of six MC68000-based 
computers. The RTMPL source programs and translator 
listings are described, as well as the utility output files, 
including the assembler source code programs for each 
computer in the simulator, and a comprehensive data 
base that describes the simulation. The use of the data 
base in conjunction with a NASA-developed real-time 
multiprocessor operating system (RTMPOS) for 
interactive execution of the simulator is discussed. Finally 
the unique features of RTMPL are summarized. 

Introduction 
A real-time multiprocessor simulator (RTMPS) is 

being developed at the NASA Lewis Research Center 
(ref. 1). It is used to develop and evaluate experimental 
hardware and software systems that will allow real-time, 
interactive simulation of dynamic systems. The RTMPS 
project is focusing on the use of multiple microcomputers 
to achieve the required computing speed and accuracy at 
low cost (relative to  mainframe digital and hybrid 
computers). A related goal is to devise a programming 
methodology that will permit engineering-level personnel 

to easily generate time-efficient code for the simulator 
and to  conveniently operate the simulator. 

A real-time multiprocessor programmers language 
(RTMPL) has been developed to  provide high-order 
language (HOL) programming of RTMPS systems. 
The RTMPL programming utility (translator) supports 
a variety of multiprocessor configurations and 
microprocessors. The utility acts as an assembly language 
programmer. It translates the RTMPL source program 
for each RTMPS computer to  a time-efficient assembler 
source program and sets up all data communication 
between the computers. The RTMPL utility is written in 
Pascal and is designed to run on a host computer under a 
disk operating system. 

The NASA Lewis implementation of RTMPL runs on 
a Motorola EXORmacs1 development system under the 
VERSAdosl operating system. The user generates 
RTMPL source files describing the simulation. The 
utility translates these source files into assembly language 
program files for the simulator computers. The utility 
generates an extensive listing file to aid the user in 
debugging the simulation and minimizing its execution 
time. The RTMPL language is macro based. Therefore 
only the macros have to be rewritten for different 
processors (typically done by system programmers). The 
current versions of the macros have been written for the 
Motorola MC68000 processor. The RTMPL utility also 
generates data-base files that describe the simulation to a 
real-time multiprocessor operating system (RTMPOS) 
(refs. 2 and'3). The RTMPOS and RTMPL complement 
each other, providing a unique environment for 
programming and engineering-level, interactive execution 
of the simulation. 

Reference 4 describes the RTMPL concept, design 
philosophy, general features, and relationships to the 
simulator hardware and operating system. It also 
provides a general orientation and discussion of the 
language. The intent of this manual is to familiarize the 
RTMPL user with the language constructs and the 
functions, capabilities, and limitations of the RTMPL 
utility. 

This users manual is organized so as to  provide a top- 
down introduction to  RTMPL programming. Since 
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the RTMPL was developed to  program a general 
multiprocessor simulator configuration, that general 
configuration and the methods used to  target the 
RTMPL utility to subsets of that configuration are 
described. That description is followed by a discussion of 
interprocessor information transfer. The RTMPL 
input/output file structure is then presented, and the 
function and interrelationships of these files are 

described in the context of interactive, real-time 
simulation. Each input file is then syntactically defined in 
terms of language constructs. Having established the 
language definition, a simple simulation example is 
developed in detail and used to  illustrate the use of the 
RTMPL utility, the resultant listings, and the output 
files. Methods of using the listings to  develop optimized 
simulations are also discussed. 



Chapter 1: Application to Multiprocessor Configurations 

Generally a multiprocessor system consists of a 
number of individual computers communicating with 
each other. To be solved on a multiprocessor system, a 
problem must be segmented. Each segment is assigned to 
a separate computer so that the problem may be solved in 
parallel, providing answers in less time than possible 
with a single computer. Generally this improvement in 
performance is gained at the cost of greater programming 
complexity since the transmission and reception of data 
on the individual computers must be handled by the 
programmer. To make the programming of a multi- 
processor system attractive to engineering-level users, a 
high-order language (HOL) is needed that can automate 
these communications. Ideally the HOL will allow the 
user to program the system as a whole rather than on a 
computer-by-computer basis. 

A multiprocessor system can be configured with a wide 
variety of communication paths (architecture) and 
computer hardware. To avoid obsolescence and to 
improve simulation transportability, the HOL must be 
conveniently targetable in terms of both simulator 
architecture and hardware. That is, the utility that 
translates the HOL should do so according to 
information describing the specifics of the target 
simulator so as to  avoid the necessity of generating a new 
utility for each simulator. Further the HOL should allow 
the user to select the number of computers and 
communication paths (within the limits of the target 
simulator) to be used to solve a particular problem. 
Finally the HOL should automate information transfer 
and synchronization within the simulator on the basis of 
information contained in the problem statement. 

This section describes the multiprocessor configur- 
ations that are programmable in RTMPL. It also presents 
an overview of the targeting methods used by the 
RTMPL utility t o  generate code for specific 
configurations and components. Also included is a 
discussion of the information transfer and past-value 
retention features of RTMPL, which allow the user to 
structure simulations for the shortest execution time. 

General Simulator Configuration 
RTMPL was developed to program the general multi- 

processor simulator configuration shown in figure 1. 
Subsets of this configuration are also supported. The 
primary elements in the general configuration are the 
front-end processor (FEP), a real-time interface, and a 
number of simulation channels. Data are transferred 
between the simulation channels via the interactive 
information bus and the real-time information bus. 

The FEP serves as the simulation controller and user 
interface. The FEP and its resident disk operating system 
provide for simulator run-time operations such as 
program loading, simulator mode control, data handling, 
and data display. The FEP also services the simulator 
peripherals (terminals, disks, printers, etc.). File- 
handling services are provided by the disk operating 
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Figure 1. - General simulator configuration. 
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system. The FEP is the bus controller for the interactive 
information bus. All communications between the FEP 
and the simulation channels are via this bus. In the Lewis 
RTMPS a real-time multiprocessor operating system 
(RTMPOS) (refs. 2 and 3) works in conjunction with the 
FEP manufacturer’s disk operating system to perform 
the required functions. 

The real-time interface serves as the communication 
path between the simulator and the real-time world. 
Using digital-to-analog and analog-to-digital converters, 
it allows the simulation to be coupled to external analog 
components such as controllers, actuators, and display 
devices. Data to and from the real-time interface are 
transferred from and to the simulation channels via the 
real-time information bus. 

The sirnulation channels are programmed to execute 
the user’s simulation. For noninteractive simulations,- 
those that do not require communication to or from the 
FEP during execution,-both buses can be used for real- 
time, interchannel communications. However, for 
interactive simulation, the interactive information bus 
might be tied up servicing user requests and might not be 
available for real-time data transfer when required. 
RTMPL allows the user to assign data communication 
paths to meet specific simulation requirements. 

Each simulation channel, in the general configuration, 
consists of two processors: a computation processor 
(COMP) tied directly to the interactive bus, and a 
preprocessor (PREP) tied directly to the real-time bus. 
These processors communicate through shared memory. 
The general configuration allows a simulation program 
to be segmented into 1 to  2N parts, where N is the 
number of available simulation channels. One of these 
channels can be assigned to perform real-time functions 
necessary to support the actual real-time simulation. This 
channel is designated as the “RTX” (real-time extension 
of the FEP). Depending on the specific implementation 
of the general configuration, the RTX may have to 
perform functions such as control of the real-time 
information bus, sequencing and control of simulation 
execution, and support of RTMPOS functions. The user 
should be aware that using the RTX functions available 
on the target simulator may require significant execution 
time overhead. This overhead may result in a limit on the 
time available for executing a user’s program on the 
RTX. The other simulator channels are designated as 
“DSC” (digital simulation computers). The DSC 
channels should generally be used for the simulation 
computations since they require the least overhead. The 
RTX should be limited to performing nonessential 
functions (e.g., analytical) since they might have to be 
sacrificed to execute the simulation within a prescribed 
update interval. 

The general configuration in figure 1 indicates the 
broad scope of multiprocessor simulators that may be 
programmed in RTMPL. Any subset of this general 

4 

configuration may also be programmed in RTMPL. 
Subsets are obtained by eliminating elements from the 
general configuration. These subsets therefore include 

(1) Single processor 
(2) Single channel 
(3) Multiprocessor, single bus 
(4) Multichannel, single bus 
(5) Multiprocessor, dual bus 
( 6 )  Multichannel, dual bus 
(7) Multiprocessor, shared memory (no data transfer 

required) 

Note that the general configuration assumes no specific 
hardware for any of its elements. RTMPL is hardware 
independent. 

Targeting 
The RTMPL utility contains features that allow the 

user to target a simulation to a particular simulator 
configuration, type of computational processor, and 
simulation purpose. The target configurations are 
specified in relation to  the general configuration and 
include (1) the number of channels and processors to be 
used, ( 2 )  the location (COMP or PREP) and function 
(RTX or DSC) of each processor, and (3) the data 
transfer paths to  be used. Processor type is specified by 
furnishing the utility with information that describes 
(1)  the hardware characteristics of the processor, ( 2 )  the 
assembly language code for RTMPL operations, 
functions and commands, and (3) the format of the 
RTMPL utility’s output (i.e., assembly language 
programs) as required for the further development of 
executable code for the processor. More than one set of 
assembly language code may exist for a processor. 
Simulation purpose is specified by selecting the set of 
codes that best meets this purpose. For example, to verify 
the execution of the simulation, the user might select a set 
of operation and function coding that contains calcu- 
lation overflow tests. After verification, the user would 
reduce the computation time by selecting a set of 
operation and function coding without the overflow 
tests. The following paragraphs describe the methods to 
be used in supplying targeting information to the utility. 

Configuration targeting is done within the RTMPL 
simulation programs. The utility requires the user 10 
construct an RTMPL program for every processor to be 
used in the simulation. Each program must be assigned a 
unique identifier (i.e., RTX, RTXPREP, DSC, or 
DSCPREP) that indicates the function and location of  
the processor. (The specific formats for these identifiers 
are provided in Chapter 9.) These identifiers implicitly 
define the configuration of the target simulator to the 
utility. Additionally, an RTMPL construct is available 
(see the section Variables, Chapter 4) to allow the user to 



specify the data path for transferring variables from one 
processor to another. This implicit definition of the data 
paths in the target simulator requires that the RTMPL 
user be familiar with the available hardware and with 
these data paths. 

The user targets the utility to processor type and 
simulation purpose by specifying a set of target definition 
files (Control Segment and File, Chapter 3) that govern 
the translation function of the utility. The RTMPL utility 
translates RTMPL source programs into assembly 
language macro statements according to  information 
contained in this set of files. These files describe the 
target processors, the target assembler, and the assembly 
language macros to  the utility. They are normally 
developed by systems programmers during installation of 
the RTMPL utility. More than one set may be available 
for a particular simulator to  allow for optimum code 
generation for different applications or simulation 
objectives. The use of the target definition files makes for 
easy transportation of RTMPL simulations between 
simulators containing different processors. It also allows 
a single source program to be translated differently for 
different purposes. For example, different target 
definitions may be used to  produce both efficient 
noninteractive code and code that permits maximum 
interaction of the user with the simulation at run time. 
Other information contained in the target definition files 
will be covered in the discussion of RTMPL constructs 
and utility functions. 

f f 

Information Transfer 

f 

The RTMPL utility translates RTMPL programs into 
assembly language programs by breaking them down into 
a sequence of macro operations and arguments. The 
target assembler then substitutes assembly language code 
for each macro in the sequence and assembles this code 
into machine language for execution on the target 
processors. The utility selects the macro operations from 
a standard set on the basis of targeting information and 
program requirements. Arguments are specified to  meet 
program requirements. The assembly language code used 
for macro substitution is obtained from the target 
definition files. This code is usually formulated by 
systems programmers during installation of the RTMPL 
utility to provide time-efficient execution of the RTMPL 
macro set on the target processors. 

The RTMPL user need not be concerned with most 
aspects of this translation process. However, knowledge 
of how the utility mechanizes information transfer may 
be important since the information transfer may 
significantly affect the execution time of the simulation. 

Three types of information transfer can be mechanized 
by the utility: control, analytical, and data. Control 
information regulates the computational sequencing of  

the simulation computations. Analytical information 
conveys simulation results to  the user. Data information 
i: passed between the various processors as required to  
compute the simulation. Control and analytical 
information transfer requirements are specified explicitly 
by the user in the RTMPL source programs (Commands, 
Chapter 5). Data information transfer is specified 
implicitly (Argument Specification, Chapter 4). 

At this point a description of the data transfer 
mechanism employed by the RTMPL utility is 
appropriate. Figure 2 shows the data paths in a single 
channel of the general configuration. One segment of 
shared memory is shown and it contains the channel’s 
transfer and external variables. A transfer variable is one 
whose value is computed in one processor in a channel 
and referenced either by the other processor in the 
channel or by a processor in another channel. An external 
variable is one whose value is used in a processor but is 
computed in another processor. Data information 
transfer between processors is implemented on the PREP 
and the COMP by using the macros shown above and 
below the segment of shared memory in figure 2. Their 
functions are defined as follows: 

STX$ stores value of a transfer variable into 
shared memory and sends value to other 
channels via bus external to processor in 
which value is computed 

STV$ as above, but sends value via bus local to  
processor in which value is computed 

TSTXVX$ tests currency of value of an external 
variable sent via bus external to receiving 
processor; repeated until value becomes 
current 

) Real-time information bus I 
A A I 

y-q 
TSTXVA$ 

Transfer and external variables 
(cur ren t  values) 

I 4 I 

c c  I 

PREP 

Shared 
memory 

COMP 

Interactive information bus (l 

Figure 2. - Information transfer. 
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TSTXVL$ as above, but used for values sent via bus 
local to  receiving processor 

TSTXVA$ as above, but used for values sent via 
shared memory from alternative processor 
in channel 

The local bus for a PREP is the real-time information 
bus. The interactive information bus is local to  a COMP. 

When the RTMPL utility encounters a reference to  the 
current value of an external variable in one of the user’s 
programs (Argument Specification, Chapter 4), it inserts 
either a STX$ or STV$ macro directly after the macro 
sequence used to compute the value in the source 
program. It also inserts either a TSTXVX$, TSTXVL$, 
or TSTXVA$ macro before the reference in the receiving 
program. The exact selection of these macros is made 
according to the location of the source and receiving 
processors in the general configuration and the data path 
specified for the variable by the user (Variables, Chapter 
4). For example, if a variable were to be transferred from 
a COMP to another channel via the real-time 
information bus, STX$ would be inserted after the 
variable was computed on the COMP. If it were to be 
received by a PREP in the other channel, TSTXVL$ 
would be used to test currency. If  it were to be received 
only by a COMP, TSTXVX$ would be used. If it were to 
be received only by the PREP in the same channel as the 
source processor, TSTXVA$ would be used in the PREP. 

To accommodate transfers of variables to  multiple 
destinations, the RTMPL utility generates a transfer map 
for each transfer variable. When a variable is selected for 
transfer, it is assigned a location in channel-shared 
transfer memory. This becomes a global assignment for 
all channels used in the simulation. Therefore this is the 
destination location (or external variable location) for 
that variable in all channels receiving the transferred 
value. The transfer map for a variable consists of a list of 
channels that reference the variable externally. The 
STX$/STV$ macros consult this map to  implement 
transfers from a specified location in the local-shared 
transfer memory to identical locations in the memory of 
the mapped channels. If a variable is externally 
referenced only on the alternate processor in the local 
channel, the transfer map for this variable contains no 
entries. Similarly in a multiprocessor configuration 
communicating only by shared memory the STX$/STV$ 
macros would not be required to consult the transfer map 
at all. 

The exact functions of  the data information transfer 
macros and their use of the transfer maps depend on the 
specific configuration of  the target simulation. Their 
general functions, as described, permit data transfer to be 
implemented for any subset of  the general configuration. 
This is done during generation of the target definition 
files. Again, the RTMPL user need not be concerned with 

the specifics as to how data are transferred. It is 
important, however, that the user realize that the time 
required to transmit and receive these data depends on 
the data path and specific configuration of the simulator. 
Proper structuring of the simulation to  minimize these 
times may make the difference in realizing real-time 
execution. 

Past-Value Control 
Dynamics are incorporated into simulations by 

manipulating the past values of variables. Integration 
algorithms, for example, require the retention of one or 
more past values of a variable. The RTMPL utility 
automates the retention of past values. 

Figure 3 illustrates the memory configuration and 
macros used to  control past values in a single channel of 
the general configuration. Local memory is shown on 
each processor in the channel. All variables whose values 
are calculated on a processor have local memory assigned 
to  them to store their current value and all required past 
values (Variables, Chapter 4). After the macros that 
calculate a variable’s current value the RTMPL utility 
inserts SVL$ macros, which roll the past values down one 
calculation interval. That is, 

VALUE (T - i) - VALUE (T - i - 1) 

where T represents the current calculation and i goes 
from 1 to  the number of past values to  be retained. The 
oldest past value is discarded. The SLV$ macro is then 
inserted to  store the current value in VALUE(T). It is at 
this point that the RTMPL utility would insert the data 
transfer macros STX$/STV$ if external transfer of the 
variable’s value were necessary. 

The RTMPL utility also automates the retention of a 
single past value of an external variable. As indicated in 
the section INFORMATION TRANSFER, referencing 
the current value of an external variable causes the 
TSTXVX$/TSTXVL$/TSTXVA$ macros to be used to 
test the currency of the value on the receiving processor. 
If only the past value of an external variable is 
referenced, these macros are not used since currency is 
not a consideration. Certain actions are necessary, 
however, to  accommodate the retention of the past value. 

Two segments of shared memory are shown in figure 3. 
One segment is used to receive the current values of 
external variables as described in figure 2. The second 
segment is identical to  the first but is used to retain the 
past values of the external variables. The XFERSV$ 
macro is used to  test the currency of values of external 
variables that are referenced only in terms of past values 
and to transfer these current values into the past-value 
segment of shared memory for use in the next calculation 
interval. The XFERSV$ macros are inserted after all 
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other calculations are completed. On a PREP this macro 
operates only on values transferred on the real-time 
information bus, and on a COMP it operates only on 
values transferred on the interactive information bus. 

The TSTXVS$ macro is inserted into the calculation 
sequence prior to  any use of the referenced external past 
value. Its function is to implement the access of the 
external past value to local processor computation. 
Unlike the TSTXVX$/TSTXVL$/TSTXVA$ macros 
currency testing is not required before implementing this 
access. 

Note that the precise functions of the data-transfer and 
past-value control macros depend on the target simulator 
configuration. The preceding descriptions apply to their 
functions in the general multiprocessor configuration. 
Although these functions are required in any 
configuration, they may be performed in whole or in part 
by the target simulator's hardware. By allowing these 
macros to be structured to suit the target hardware, 
RTMPL can be applied to the various subsets of the 
general configuration. 



Chapter 2: RTMPL Environment 

The RTMPL utility functions under a disk operating 
system (DOS). It was initially implemented under 
Motorola’s VERSAdos on an EXORmacs development 
system. The utility is specific to a particular DOS only in 
the file identification format. In this manual, files are 
identified by using the following VERSAdos format: 

VOLUME:USERNUMBER.CATALOG. 
FILENAME. EXTENSION 

where the field widths (Le., maximum number of 
characters) are 

The user should become familiar with the file 
identification format required by the DOS used in the 
specific installation of RTMPL. 

The RTMPL utility processes and produces files of 
information. It operates in conjunction with other DOS 
utilities to develop user simulations. This section places 
the RTMPL utility in context with the overall simulation 
effort and familiarizes the user with its major functions. 

Simulation Development System 
Figure 4 shows the RTMPS software utilities used in 

the  development and  execution of real-t ime 
multiprocessor simulations. The SYSDEF utility is used 
to generate target definition files. This is normally done 
by qualified systems programmers and need not concern 
the general user. Simulation development begins with the 
DOS editor, which is used to develop RTMPL source 
files. These files define the simulation problem and 
contain programs for each simulator processor to be used 
in its execution. The RTMPL utility translates the 
RTMPL source into assembly language source files 
according to information contained in the target 
definition files. The target assembler and linker utilities 
are used to create load modules for execution on the 
target processors. The RTMPL utility also produces 
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simulation-descriptive data-base files. The RTMPOS 
utility accepts the load modules and loads them into the 
simulator at run time. Also at run time RTMPOS reads 
the data-base files to establish a simulation data base that 
will allow engineering-level interactive execution of the 
simulation. In addition to  the object files (assembler 
source and data base) the RTMPL utility produces an 
extensive listing file that provides messages and source 
interpretations to  aid the user in developing error-free, 
time-efficient simulations. The RTMPL source, object, 
and listing files are discussed more completely in later 
sections of this manual. 

Source Translation 
The RTMPL utility is, in effect, an assembly language 

programmer. From the simulation description supplied in 



the source files the utility develops assembly language 
programs according to information supplied in the 
specified target definition files. Although the translation 
process is essentially transparent to the user, the major 
functions of the utility in performing this translation are 
described here to provide a background for the source 
and object file descriptions that follow. 

The utility parses each executable source statement into 
a list of operations and associated arguments. While 
doing this, it tests each statement syntactically for 
correctness. (Parsing is the breaking down of complex 
statements into an ordered sequence of primative 
operations.) It also tests each statement semantically 
against source argument definitions. Arguments are 
defined in terms of data type and precision. RTMPL 
supports the Boolean data type and three arithmetic data 
types (integer, scaled fraction, and floating point), as well 
as three arithmetic precisions (single, double, and triple). 
The required data type of the operation is determined 
from the data type of the statement result. As part of the 
semantics test the utility compares the required data type 
with the data type associated with the arguments of the 
operation. 

If the statement is found to be syntactically and seman- 
tically correct, the operation/argument list is translated 
into a list of assembly language macros. The utility 
supports three argument sources (register, memory, and 
immediate). An arithmetic addition operation, for 
example, could be supported by up to 81 addition macros 
in the target definition files (considering all possible 
combinations of data type, precision, and argument 
sources). Having already determined the required data 
type, the required precision is determined based on look- 
aheads and look-backs at the other operations in the list. 
The minimum precision necessary to provide the required 
accuracy of the statement result is selected as the desired 
precision of the macro. The target definition files are 
consulted to see if this precision is supported. If it is not, 
the next best macro is determined. The user is advised if 
accuracy will be impaired because the proper macro is not 

available. The required precision of the arguments is 
obtained from the target information once the precision 
of the macro has been determined. Precision conversion 
macros are inserted automatically by the utility to 
provide the proper precision of the arguments. 

At this point the macro options have been reduced to 
those that support the required operation, data type, and 
precision. It now remains for the utility to select the 
macro, from this set, that best supports the available 
argument sources. The values of the arguments may 
reside in memory or in register (if they are the results of 
previous calculations). If the argument is a constant, it 
may be expedient to use an immediate data source (where 
the value exists only within the code of the operation). 
Desired sources are determined so as to minimize the 
loading and storing of data from and to memory. The 
target macro set is consulted to see if the desired sources 
are supported. If they are not, the best available source is 
selected and appropriate load and store macros are 
inserted to conform the arguments to the required 
sources. The use of scratch pad memory (temporary 
storage) is fully automated by the utility. 

When the macro set for the source statement has been 
formed, it is edited by the utility (i.e., scaling macros are 
inserted) if the scaled-fraction data type has been 
specified by the user. Past-value control and data transfer 
macros are also inserted as required. 

The user is advised of all precision and scale factor 
adjustments by means of warnings in the listing file. If 
adjustments to constant arguments are necessary, a new 
constant with the proper attributes is created by the 
utility. Definitions of variables are not modified. Using 
the warnings, however, the user may opt to incorporate 
the redefinitions in the source programs to eliminate 
superfluous adjustment macros and thereby reduce 
simulation execution time. 

The final steps in the translation process are the 
assignment of registers and the generation of assembly 
language source files. 
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Chapter 3: Simulation Structure 

RTMPL is a structured, high-order language designed 
to facilitate the development of error-free, time-efficient 
simulations. The user constructs an RTMPL simulation 
by creating RTMPL source files as shown in figure 5. The 
source files define the four segments: control, global 
data, local data, and execution of an RTMPL simulation. 
There is one control segment and, at most, one global 
data segment for each simulation. There is one local data 
segment and one execution segment for each processor to 
be used in the simulation. The combination of local data 
and execution segments for a processor is referred to  as a 
program. 

Separate source files are used to contain the control 
and global data segments. A separate source file is needed 
for each program. These files are text files, but they must 
conform to RTMPL constructs. In the following sections 
the format of RTMPL constructs and the structure of the 
RTMPL source files are described. 

Syntax Diagram and Basic Constructs 
RTMPL constructs can be best illustrated by using 

syntax diagrams. Syntax diagrams for the basic RTMPL 
constructs, shown in figure 6, define these constructs and 
show how to use them in writing source code. 

In general a syntax diagram contains one or more 
programming elements linked together by curved paths 
that are terminated with arrowheads to show the 
direction of travel. A rectangular element is used to 

1 indicate where a named construct is t o  be inserted. 
Parenthetical remarks are used within some syntax 
diagram rectangles for clarification and generally to 
denote a special application of the referenced construct. 
They do  not modify the construct in any way. A circular 
or oval element contains a symbol or string of symbols 
that must be exactly replicated. The basic construct, 
NAME (fig. 6(a)), consists of the LETTER construct 
followed by a series of LETTER or DIGIT constructs 
(figs. 6(b) and (c), respectively). Note the use of the “ ...” 
sequence in these figures to show the inclusions of all 
symbols from “A” to “Z” and from “0” to  “9.” 

I 

, 

~ 

S o u r c e  f i l e  

segment 

Execut ion  
segment 

S o u r c e  f i l e  

C o n t r o l  

S o u r c e  f i l e  

Global data 

0 0 0  

S o u r c e  f i l e  

segment 

segment  

F i g u r e  5. - RTMPL source  f i les. 

A basic problem with syntax diagrams is in the 
definition of limits. In the NAME construct the 
LETTER/DIGIT choice is contained in an infinite loop. 
In reality this construct is limited to eight symbols. To  get 
around this problem, notes are used in the diagrams to  
indicate the limitations imposed. 

The INTEGER and SIGNED-INTEGER constructs 
are shown in figures 6(d) and (e). The number of digits 
allowed in an integer depends on the Pascal compiler 
used to  generate the RTMPL utility. Sufficient digits will 
generally be available for all applications. There is no 
need to  burden the user with precise specifications on 
these limits since violations will be rare and flagged as 
errors by the utility. 

The VALUE construct (fig. 6(f)) is used to  specify real 
numbers in RTMPL. A versatile E-format is used. An 
additional syntax diagram element, the hexagon, is 
shown in the construct. The hexagon denotes that only 
one path may follow from it ,  depending on the value of a 



LEFER 

LETTER 

‘Loop n limited to seven characters. DIGIT 

(a) Identifiers. 

lLoop l imit  is application dependent. 

ldl Unsigned integers. 
(bl Letters. 

Signed integer 

le) Signed integers. 
IC) Digits. 

Value 

INTEGER 

SIGNED 
INTEGER 

(tl Real numbers. = FALSE 

(gl Boolean values. 

Comment 

7 Lw STRING 

(h) Comments. 

S t r in  EczEmz3 LETTER DIGIT 

(i) Character string. 

Figure 6. - Basic constructs. 

previously specified condition. In this case the condition 
“DECPT” or “not DECPT” (#DECPT) depends on an 
option selected during generation of the control file. It is 
used to  specify whether a decimal point is required in the 

representation of whole numbers (following section). 
Some examples of real numbers using the VALUE 
construct are 

3479., .3479E +4,  1.7048 

or, if #DECPT is set in the control segment, 

7048,7048E - 4 

Boolean values are defined by the LOGIC construct in 
figure 6(g). 

RTMPL allows the user to program in a free form. 
That is, although the syntax diagrams must be followed 
exactly, the user is free to  insert spaces and line feeds 
anywhere. This feature allows the user to structure source 
programs that are personally readable. The semicolon is 
used in RTMPL to denote the end of a statement or 
entry. To further enhance readability, the user may insert 
comments anywhere after a semicolon or at the start of a 
source file. Comments are structured by using the 
COMMENT and STRING constructs (figs. 6(h) and (i)). 
An example of a comment is 

*THE*COMPRESSOR*HAS * STALLED*; 

Note that asterisks are used in lieu of spaces in strings. 
All statements, entries, and comments are limited to  3200 
nonspace characters (i.e., semicolons may not be 
separated by more than 3200 nonspace characters). 

Control Segment and File 
The control segment describes the nature of the 

simulation to  the RTMPL utility and regulates its actions 
in processing the other segments of the simulation. 
The file containing this segment has no identification 
restrictions (as do other RTMPL source files). It is 
referenced as an argument in the DOS command line that 
invokes the utility (see Chapter 7). This single-record 
segment (file) is generated by using the CONTROL 
construct (fig. 7). The file (fig. 7(a)) consists of up to 
11 + N  entries, where N is the number of simulator 
channels to  be used for the simulation. Each entry must 
be terminated with a semicolon. An example of a control 
file for a simulation called T700SIM is shown here. 

DECPT,FLOPPY; 
T700SIM; 
TRANSIENT*TEST*CASE; 
FLO *T *BLADE; 
FLOP; 
FLOP; 
FLOP; 
1; 

(entry 1) 
(entry 2) 
(entry 3) 
(entry 4) 
(entry 5 )  
(entry 6) 
(entry 7) 
(entry 8) 
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4; (entry 9) 
RTX.INPRC; (entry 9 + 1) 
DSC.CMPSIM; (entry 9 + 2) 
DSC.BNRSIM; (entry 9 + 3) 
DSC.TRBSIM; (entry 9 + 4) 
GLOBAL. INT700; (entry 10+4) 
18086.MACHCHAR; (entry 11 + 4) 

The first entry contains user-specified options that 
govern the operation of the utility. One or more options 
must be specified from the defined set. Multiple options 
are separated by commas. These options are defined in 
figure 7(b) and summarized in table I for easy reference. 
When the utility encounters the NONE option, any 
previously specified options are ignored, but any options 
following NONE are enforced. 

The FLOPPY option results in the utility pausing prior 
to accessing an RTMPL source file. The message 

L DECPT \ 

\ * NOGLF \ 

L e SCAN \ 

L FLOPPY \ 

L DEBUG \ 

L 

(FILE ID) READY? (Y/N) 

is displayed and the utility waits for a “Y” response. This 
option is useful if all RTMPL sources files cannot be 
contained on a single physical volume such as a floppy 
disk. Note the use of angular brackets. The convention 
will be used in this manual to denote user-supplied or, in 
this case, utility-supplied information of the type 
specified within the brackets. 

The DECPT option requires the utility to insert 
warnings in the listing file i f  a decimal point is not 
contained within an engineering unit value. This option 
should be used by those wishing to differentiate between 
real and integer values or those worried about decimal 
point omissions. The DEBUG option will not normally 
be selected by the user. It requires the utility to provide 
functional information in the listing file to verify the 
validity of the utility’s operation. The NOGLF option, if 
used, advises the utility that the simulation contains no 
global data file. The global data segment is optional in 
RTMPL. 

Entry 2 contains a user-assigned simulation name. It is 
used by the utility whenever reference to the entire 
simulation is required. It  is used in developing listing 
headers, in certain diagnostic messages, and in file 
identification for non-program-specific data-base file 
assignments. Entries 3 and 4 allow further user 
descriptions of the simulation for use in listing headers. 
They are limited to 64 and 32 characters, respectively. 

Entries 5, 6, and 7 specify logical volume names 
(designating the disk or medium containing the files) for 
the RTMPL source, object (assembler source), and data- 
base files ownership. Entry 8 is the user number for file 
identification. The constructs for these entries and 
entry 2 are defined not in RTMPL but by the resident 
DOS and are installation dependent. The volume names 

Cont ro l  
7 

NAME 
OPTION (s imu la t ion)  

I STRING STRING 
(descript ion) ( u s e r  ID) 

VOLUME 

NAME 
(channe l )  

W 
NAME (global 

OGLF segment) 
r I 

NAME (target 
catalog I - 

’64-character I i m i t  
’32-c ha r a c k  r I im it 
31nstal lat ion dependent a n d  n o t  def ined in RTMPL. 
4Magnitude l imi ted to n u m b e r  of target c h a n n e l s  available. 
50ne RTX c h a n n e l  allowed p e r  s imulat ion.  
6Loop l imi ted to n u m b e r  of c h a n n e l s  specified. 
7Used to designate mach ine  charac ter is t i cs  target file. 

(a) Fi le structure.  

0 t i o n  r 

and user number are used by the utility in accessing 
source files and in generating object files. 

Entry 9 defines the number of simulator channels (N)  
to  be used in the simulation. Entries 10 through 9 + N  
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Option 

DECPT 

NOGLF 

FLOPPY 
DEBUG 

NONE 

TABLE 1.-UTILITY CONTROL OPTIONS 

Description 

Causes a listing file warning if a decimal point is not 

Advises that the simulation does not have a global 

Causes the object files not to be generated and the listing 

Causes a pause for disk insertion before files are accessed 
Not for general use; causes expanded listing containing 

Causes all previously specified options to be set to default 

encountered in a real number 

segment 

file and special macro files to be generated 

RTMPL diagnostic information 

value 

contain the channel identifiers in terms of type and 
logical name. Entry 10+N must be included if the 
NOGLF option was not selected. Entry 11 + N specifies 
the target simulator characteristics and forms the basis 
for the utility’s referencing of all target definition files. 

Program Files 
A program file contains the local data and execution 

segments for each processor to be used in the simulation. 
The program file for a VERSAdos installation must be 
named as follows: 

VOLUME ID 

USER NUM 

CATALOG ID 

must be consistent with that 
specified in control file (entry 5 )  

must be consistent with that 
specified in control file (entry 8) 

must be “RTX” or “DSC” to 
identify program function. (If 
program is for a PREP, “PREP” 
must be appended (e.g., 
DSCPREP).) 

must be logical name assigned to a 
channel in control file (entries 9 
through 8 + N) 

EXTENSION 

Examples of program file names based on the previous 
control file examples are 

FLOP: 1 .RTXPREP.INPRC.SA 
FLOP : 1. RTX. INPRC . SA 

FLOP: 1 .DSCPREP.CMPSIM.SA 
FLOP: 1 .DSC.CMPSIM.SA 

FLOP: 1 .DSCPREP.BNRSIM.SA 
FLOP: 1 .DSC.BNRSIM.SA 

FLOP: 1 .DSCPREP.TRBSIM.SA 
FLOP: 1 .DSC.TRBSIM.SA 

FILE NAME 

“SA,” indicating a text file 

Program r--- 

NOT NOGLF 

NOT SCAN 

NOT FLOPPY 
NOT DEBUG 

Variable 
def in i t ion 1 
Constant 
definit ion 7 

J 
1 

Statement 7 
Task 
definit ion 

b Statement 

l A t  least one EXEC record required. 

Figure 8. - Program file. 

The program file construct is shown in figure 8. Each 
program file is made up of records. There are five types 
of record, denoted by the record identifiers VARIABLE, 
CONSTANT, ARGGROUP, EXEC, and TASK. The 
identifier is separated from the record content by the 
colon character. Records are terminated by the end-of- 
record statement “EOR;”. Record types may appear 
more than once in a file and their order in the file is up to 
the user. All statements and definitions within the records 
must be terminated with a semicolon. 
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The EXEC and TASK records define the execution 
segment of a processor program. VARIABLE, 
CONSTANT, and ARGGROUP records define the local 
data segments for the EXEC and TASK records. 
Constructs for these records are described in the sections 
of this manual that discuss the segments. At least one 
EXEC record is required in each program. The other 
records are used as necessary to describe the program 
function. Program files containing the various record 
types will be shown in detail for the example problem. 

I 

Global Data Segment and File 
The global data file contains data that may be 

referenced as execution segment arguments in any or all 
of the program files. The file for a VERSAdos 
installation must be named as follows: 

VOLUME ID 

USER NUM 

CATALOG ID must be “GLOBAL” 
FILE NAME user selected 
EXTENSION 

must be consistent with that 

must be consistent with that 
specified in control file (entry 5 )  

specified in control file (entry 8) 

“SA,” indicating a text file 

An example of a name for the global data file 
corresponding to  the control file example is 

.-(- MESSAGE Message def in i t ion I ’  

FLOP: 1 .GLOBAL.INT700.SA 

The construct to be followed in generating the global data 
file is shown in figure 9(a). The file consists of records. 
There are two different record types, denoted by the 

Global data 

\ Constant 
def in i t ion 

I t  J l  

i 

(a) Global f i le  f o r m a t  

Message def in i t ion 

f 
I NAME STRING 

(message ID) (message) 

(b) Messages. 

* 

Figure 9. - Global data file. 

identifiers MESSAGE and GLCNST. The record 
identifier is separated from the record content by the 
colon character. Records are terminated by the end-of- 
record statment “EOR;”. These records are used as 
required to  define the global data segment. Remember, if 
no data segment is required, the NOGLF option must be 
selected in the control segment. Records may appear 
more than once in a file, and their order in the file is up to  
the user. All definitions within records must be 
terminated with a semicolon. Constructs for these 
records and their functions are described in the following 
section. 
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Chapter 4: Data Segments 

The local and global data segments are used to define 
simulation variables, constants, argument groups, and 
run-time messages. These definitions are used to verify 
semantics and to build assembly language macros when 
these items are referenced as arguments in the execution 
segments. Variables are defined as those items that are 
subject to change as a result of executing the simulation. 
Constants are those items that do not change as a result 
of simulation execution. Argument groups are lists of 
variables and constants. They can be used by RTMPOS 
for run-time data gathering and display. They may also 
be used within the simulation to pass arguments and data 
between the user’s programs and target library 
procedures. Messages are displayed to the user during 
simulation execution when user-programmed conditions 
are met. 

This section describes the constructs used to define 
data items. The data attributes are discussed, as are 
special properties that are useful for simulation. 

INTEGER * 

(a) Size. 

(b) Data type and  prec is ion .  

SF 

L l  SIGNED I 
INTEGER 

* 

(c) Scale factors. 

F igu re  10. - Special data at t r ibutes.  

Data Attributes 
All local and global data are assigned names to identify 

the data item (fig. 6(a)). All names within a local data 
segment must be unique within the segment. All names of 
constants within the global data segment must not only 
be unique within the global data segment but also 
different from any name assigned in any local data 
segment in the simulation. 

Along with names, RTMPL requires certain other 
attributes to be specified, The VALUE construct (fig. 
6(f)) is used to specify data values. Other attributes are 
size (SIZE), data type and precision (DTP), and scale 
factor (SF). Constructs for the specification of these 
attributes are given in figure 10. SIZE (fig. 10(a)) is used 
to define the number of elements associated with a data 
name. Its meaning is data-construct dependent and is 
described in the discussion of these constructs. DTP (fig. 
10(b)) is used to specify the data type and precision of 
constants, variables, and argument groups. RTMPL 
allows assignments of four data types: 

(1) Integer (I): integers 
(2) Scaled fraction (S): real numbers 
(3) Floating point (F): real numbers 
(4) Boolean (B): logical (true or false) 

The arithemetic data types-1, S, and F-must be 
assigned a precision. RTMPL supports single-, double-, 
and triple-precision data of these types (1, 2, and 3). The 
selected precision dictates the number of bytes used in the 
target processor to represent the data and is directly 
proportional to  accuracy and generally inversely 
proportional to computational speed. Usually single- 
precision integer data provide two bytes of accuracy, with 
another two bytes of accuracy added for each increase in 
precision. The exact implementation of precision by the 
target processor is specified in the target definition files. 
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The choice of data type assigned to  integer or logical 
variables and constants is obvious. However, in assigning 
real variables and constants, the user must decide 
between the S and F data types. This choice is dictated 
primarily by the computational speed requirements of the 
simulation and the computational speed capability of the 
target processor in performing operations on the data 
types. Generally scaled-fraction computations are faster 
but are slightly more difficult to  generate since they 
require scaling of all variables and constants. Since 
scaled-fraction values must fall between - 1 and + 1 ,  the 
maximum absolute value of each variable or constant 
must be determined and specified in its RTMPL 
definition. RTMPL uses binary scaling. The maximum 
absolute value must therefore be specified in terms of the 
minimum power of 2 that exceeds the maximum absolute 
value. The specification is made by using the construct in 
figure lO(c). For example, if the maximum absolute value 
is 3 1.9, SF becomes 5 (25 = 32); if the value is 0.1239, SF 
becomes - 3  (2-3=0.125). 

While processing equations involving scaled fractions, 
the RTMPL utility will perform all necessary scale factor 
manipulations, thereby relieving the user of this chore. 
The user-assigned scale factor (SF) is referred to as the 
“nominal” scale factor of a variable or constant. When a 
operation is performed on the variable or constant, a 
“required” scale factor is then determined by the utility 
on the basis of subsequent operations (required to 
compute the equation) and information concerning the 
operations obtained from the target definition files. The 
difference between the “nominal” and “required” scale 
factors is reconciled by inserting a scaling macro (shift 
operation) before or after the operation as appropriate. 
The result of the operation is assigned the “nominal” 
scale factor for use when the result is an argument of a 
subsequent operation. The utility will list recommended 
adjustments in SF or precision specifications that will 
minimize the computation time (see Chapter 8). Through 
these and other advisories the user can adjust the variable 
and constant definitions to eliminate time-consuming 
scale factor adjustments and potential overflow or 
underflow problems. 

Variable definition 

I, 
1 

/ SF wTbw 2 
DTP 

(variable ID) 

(past values) 

VALUE 
(HOLD) 

(Default HOLD to 01 (Default 1 c ~ o - 9  J 

.his path taken i f  variable defined as scaled fraction. 
‘his path taken if variable not defined as scaled fraction. 

Figure 11. - Variable definition. 

automatically adjusting the variable’s past-value array 
after its solution in an equivalence statement. All 
variables must appear on the left of an equivalence 
statement. 

Two values must be assigned to  each variable in the 
variable definition. The hold value is reserved for special 
operating system (RTMPOS) applications. The initial- 
condition (IC) value is the starting value of the variable 
when the program is loaded and whenever the RTMPOS 
IC mode command is executed (ref. 4). Both are specified 
in engineering units even if the variable is designated as a 
scaled fraction. 

Note the various default paths through the 
VARIABLE DEFINITION construct. All or any 
attributes of a variable may be defaulted (as long as the 
required default values exist). DTP and SF may be 
defaulted to  those attributes of the last defined variable. 

Consider the following examples of variable 
definitions based on the figure 1 1  construct: 

( 1 )  Variable SPEED is to  have the value 5000 rpm in 
hold and IC. It is a single-precision, scaled-fraction 
variable and is to be transferred on the interactive bus. 
Since scale factors 212 = 4096 and 213 = 8196, speed would 
be defined as 

Variables 
.SPEED = S1/13, 1 [5000./5000.]; 

Variables are defined by using the construct in figure 
1 1 .  Each variable is assigned a name and set of attributes. 
DTP and SF were described previously. The SIZE 
attribute, in this case, determines how many current and 
past values of a variable are to be kept. For example, if 
the simulation requires the current and last value of a 
variable (e.g., if  a second-order integration scheme is 
used), its size would be specified as 2. The minimum 
variable size is 1 (i.e., only the current value is saved to 
provide one past value). The RTMPL utility provides for 
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or, using defaults, 

.SPEED = S1/13 [5000./5000]; 

(2) Variable SPEEDOT is to have the value 0.0 in hold 
and IC. It is a single-precision, scaled-fraction variable 
and is to be transferred on the real-time bus. Two past 
values are required for the numerical integration scheme. 
Therefore SPEEDOT would be defined as 



SPEEDOT = S1/10, 2 [O.O/O.O]; 

or, using defaults, 

SPEEDOT = S1/10, 2; 

(3) Variable READOT is to have the same attributes as 
SPEEDOT. Therefore all defaults are used to define 
READOT after the definition of SPEEDOT. 

SPEEDOT = S1/10, 3; READOT; 

Two types of processor memory are reserved for the 
variable values-local memory and transfer memory 
(fig. 3). Variable values can only be transferred to other 
programs if they are stored in transfer memory. The 
RTMPL utility will automatically assign transfer memory 
if a variable is referenced in another program. Otherwise 
the variable is assigned to local memory. The user 
specifies the transfer path for a variable by inserting or 
omitting a period before the name specification. 
Omission causes real-time bus transfer; insertion forces 
interactive bus transfer. 

Certain variables are implicitly defined for every 
program by the target definition files. Called target 
Boolean variables, their values are generated by the 
processor's hardware and firmware. They are always 
local and may not be referenced directly in another 
program. They are always Boolean (i.e., DTP=B). 
Examples of target Boolean variables are OVERFLOW, 
POSITIVE, ZERO, and NEGATIVE, which may be 
generated by the processor in its status register. Since 
these variables are processor dependent, the user must 
refer to the system description of the target definition file 
to see what variables are available. 

Const ants 
Constants are defined by using the construct in figure 

12. As with variables, constants have DPT, SF, and SIZE 
attributes. SIZE for constants specifies the number of 
elements in a multivalued constant array. The minimum 
constant array size is 1. The construct definition allows a 
string of N identical values to  be extended as N @ value. 
Therefore three sequential values of 1.25 could be entered 
as 3 @ 1.25. The number of values entered must 
correspond to  the specified size. No value defaults exist. 

RTMPL allows the use of four types of constant: 

(1) Local constants 
(2) Local parameters 
(3) Global constants 
(4) Global parameters 

Parameters are constants that are adjustable through 
RTMPOS at run time. They are specified during the 

Constant definition 
7 
I, 

NAME 
(constant ID) 

VALUE bpPj-- (number INTEGER of values1 

'Boolean 0V"l data type not allowed. 
'This path taken if constant defined as scaled fraction. 
3This path taken if constant not defined as  scaled fraction. 

Figure 12. -Constant definition (local orglobal). 

constant definition by preceding the constant name with 
a period. Local constants and parameters are those 
defined within the program file. Global constants and 
parameters are those defined within the global definition 
file, and their use is described in the discussion of that 
file. 

RTMPL does not allow user definition of Boolean 
constants. The Boolean constants TRUE and FALSE are 
predefined by the utility and available implicitly to the 
user. 

Global Constants 
The GLCNST records in the global data file are used to 

specify constants and parameters that are global to the 
simulation. The record content is specified by using the 
construct of  figure 12. Global constants may be 
referenced as arguments in any program, without being 
defined in that program. Upon being referenced, the 
global constant definition is copied into the program. 
Apart from the advantage that global constant records 
relieve the user of the task of defining the same constant 
in a multitude of programs, the global constant has a 
special meaning to the operating system. If a global 
constant is defined as a parameter, modifying its value at 
run time, by using RTMPOS, will cause it to change 
globally throughout the simulation. 

Some examples of constants (both local and global) are 

(1) .PI = 3.1416 (scaled to 4; single precision; 
parameter; single value) 
.PI=S1/2, 1 [3.1416]; 
or 
.PI =S1/2 [3.1416]; (using the SIZE default) 
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(2) K1 = 1 (integer; double precision; not parameter; 
single value) 
K1 =I2[1]; 

(3) PRXVALS = 1.25,1.25,1.25,4.0,5.0 (floating point; 
single precision; not parameter; five values) 
PRXVALS=Fl,  5 [3@1.25, 4.0, 5.1; 

Messages 
Messages can be relayed to the user at run time via the 

ADVISE command. These messages are defined in the 
global data file. Figure 9(b) defines the MESSAGE 
DEFINITION construct. A message is assigned a name, 
which is used to  reference the message in an advisory. A 
message containing up to 64 characters will be displayed 
on the user’s terminal upon execution of the advisory. A 
message is global and may be referenced in any program. 
Note that spaces are ignored in the message format, but 
asterisks are interpreted as spaces. 

Argument Specification 
To understand argument groups, it will help to 

understand how arguments are defined. When a variable 
or constant is referenced in a statement as an operand or 
in an argument group, it is called an argument. RTMPL 
allows any variable or constant, defined within the scope 
of the simulation (including global constants), to  be 
referenced as an argument. The ARGUMENT construct 
is defined in figure 13. 

Argument 

(Default to local processor type1 
~-~ r- - 

NAME (program 
variable ID) * 

NAME Ip rq ram 
constant ID) 

(Default to f i rst  item) 

* 
(element number) 

NAME (global 
constant ID1 

Global constants are referenced only by name. 
Program-defined constants and variables can have their 
source program file explicitly specified. This is done by 
specifying the source channel name and processor type. 
Thus 

TURBINE.C.FLOW 

Lpecifies the variable FLOW defined in the COMP 
program in channel TURBINE. Examples of other 
source specifications are 

FLOW 

.P.FLOW 

source of variable FLOW is local 

source of variable FLOW is PREP 
program file 

program in logical channel 
assigned to local program 

TURBINE.FLOW source of variable FLOW is 
program for local processor type 
assigned to logical channel 
TURBINE 

If a constant is specified as an external argument (defined 
in another program) in the local program and has not 
been defined in the local program, the RTMPL utility 
will create a local constant with the name and attributes 
of the argument specification. This constant will be used 
as the argument. However, if a constant of the same 
name has been defined locally, a program error will 
result. This mechanism can be used to  identify identical 
constants in different programs that should be handled 
via global constants. 

If a variable not defined in the local program (but 
defined in another program) is specified as an argument, 
the utility will create an external variable in the local 
program and assign it a location in external memory. Its 
value will be transferred to the local program after it has 
been computed in the external program. The external 
variable will then be used as the argument (Information 
Transfer, Chapter 1). 

The ARGUMENT construct provides a means for 
specifying a particular past value of a variable or a 
particular element within a multivalued constant array. 
This is done by appending $n to the name, where n is the 
variable past-value number or constant-element number. 
For example, 

FLOW $2 (second past value of flow) 

TABLE $10 (tenth element in constant array TABLE) 

Note that the term “past value” refers to the results of 
computations. When a variable is recomputed, the old Figure 13. - Arqurnent specifications. 
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value is assigned as the first past value of the variable. 
The RTMPL utility will issue a warning if a local variable 
is referenced as an argument before it has been assigned a 
value through computation. 

Ll NAME 
(argument group ID1 

Argument Groups 
An argument group is a set of arguments grouped 

together under a single name. It can be used to  pass 
arguments to or from target library procedures (see the 
CALL command). Argument groups also provide for 
large-volume data transfers between the FEP and the 
simulator channels. Argument groups are specified in a 
program file by using the ARGGROUP construct defined 
in figure 14. 

ARGGROUP attributes consist of a data type and 
precision (DTP) assigned to the group, the maximum 
number of arguments to be contained in the group 
(SIZE), and an optional initial set of arguments. 
Argument groups can be edited at run time by using 
RTMPOS. Therefore arguments need not be specified in 
the program. However, since only variables and 

INTEGER 
(SIZE1 ARGUMENT 

I-Q-i (Default a l  arguments) 

(Default SIZE to 1) 

Figure 14. - Argument  group definit ion. 

constants that are available on the argument group’s 
processor can be inserted at run time into the argument 
group, the user should include, in the ARGGROUP 
specification, any external variables and constants that 
may eventually be required in the ARGGROUP. This will 
allow the RTMPL utility to form these constants and 
external variables. 

All arguments within an argument group must con- 
form to the specified DTP for that group. For examples 
of argument groups and their uses, see Chapter 6 .  
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Chapter 5: Execution Segment 

Executive d e f i n i t i o n  
The execution segment of a program (fig. 15)  is made 

up of two types of records-executives and tasks. 
Executives are used to  provide program control and to  
perform major simulation functions. Tasks are used to 
perform services for executives. Two types of executives 
may be specified by the user: background and foreground 
(see the section Executives, Chapter 5 ) .  Executive and 
task records are made up of statements that define the 
required simulation execution. 

This chapter discusses the definition and use of 
executives and tasks. The user should refer to figure 15 in 
these discussions. The variations of the STATEMENT 
construct and the use of the EXPRESSION construct are 
explained. 

Background  exec ut ives 

SELECT (RTMPOSI 

EXEC: < I D  >IO1 . 
EXEC: < ID> lO I  ; 

\ EOR; 

I I 

INTEGER 
( p r i o r i t y  leve l )  (execut ive ID1 

b 

F igu re  16. - Execut ive reco rd  speci f icat ion.  

Executives 
An executive is defined by using the construct in figure 

16. It is assigned a name and a priority level. The first 
seven characters of the name must be unique within the 
set of program executive and task names. The priority 
level is an integer, limited in magnitude to 8, that 

ACTIVATE < I D >  
Foreg round  execut ives alternate 

processo r  

EXEC: <ID>[21 ; 

EXEC: < I D > [ l I  ; 
<STATEMENT> 

ENABLEIDISABLE< task ID > 
ENTER< task ID>  
DISPATCH < task ID>. . ~ 

1 
ENABLEIDISABLE (RTMPOS) 

TASK: <ID>; 

TASK: <ID>.  

TASK: <ID>; 
<STATEMENT> 

EOR; 

F igu re  15. - RTMPL s o u r c e  reco rds  - execu t ion  segment. 



specifies the computational priority of the executive 
within the program. Lower priority executives may be 
interrupted for execution of higher priority executives. 
Priority assignments greater than zero must be unique 
within the program. 

The RTMPL utility modifies the user-specified name, 
to ensure its uniqueness. (Future versions of the utility 
will eliminate this annoyance.) A special assembler 
character (“.”) is inserted following the name, if the 
name is seven characters or less. If an eight-character 
name is specified, the last character is replaced with the 
special assembler character (e.g., “TURBINES” would 
become “TURBINE.”). (Two special assembler 
characters are defined in the target definition files. These 
are used whenever the utility must generate a name. In 
this manual the period and dollar sign are used.) 

Executive execution is governed by two processor 
firmware programs: the sequencer and the channel 
interrupter (ref. 1). The sequencer is controlled by the 
FEP with information provided by the user at run time 
through RTMPOS. The channel interrupter firmware 
services user-programmed interrupts between COMP and 
PREP processors in the same channel. 

The user may specify background executives at run 
time that will control the execution of the simulation 
programs through the sequencer. RTMPL requires at 
least one background executive in each program, but 
more than one is permitted. By using multiple back- 
ground executives the user may change the simulation 
subtly or completely at run time (i.e., more than one 
simulation may be programmed within a single set of 
RTMPL source files). All background executives must 
have priority levels of zero. 

Executives that are assigned priority levels greater than 
zero are considered to  be foreground executives. Their 
execution is governed by the local processor’s channel 
interrupter firmware. This firmware functions during 
program execution and allows user-programmed 
interrupts between COMP and PREP processors in the 
same channel. Obviously foreground executives may only 
be implemented on simulators having both COMP and 
PREP programs in a channel. 

Typically the function of a foreground executive in a 
particular program will be to  service exceptions occurring 
in the alternate processor in the channel. These 
exceptions would be generated in the alternate processor 
by using the ACTIVATE command (see the section 
Commands) and would be the result of conditional 
testing in that processor’s program. This eliminates 
duplication of code and data transfer when both 
processors must respond to the same event. Any number 
o f  fo reg round  executives may be activated 
simultaneously, with the order of execution controlled by 

the channel interrupter according to predefined priority 
levels. Upon completion of all activated foreground 
executives, program control returns to the background 
executive. If a foreground executive is reactivated while it 
is still active, the second activation request is ignored. 

Tasks are defined by using the construct in figure 17. 
The construct consists merely of identifying the task by 
name. The first seven characters of the name must be 
unique within the set of executive and task names used in 
the program. As with the executive definition the task 
name is modified by using the special assembler character 

Tasks consist of statements structured to do a 
particular job within a program. They are reenterable 
and therefore may be initiated in any background or 
foreground executive (see ENTER and DISPATCH 
commands). A task can never be initiated by another 
task. 

To enhance their flexibility, tasks may be enabled or 
disabled at run time by the user through RTMPOS. They 
may also be enabled or disabled by any executive or task 
in the program (see ENABLE and DISABLE com- 
mands). A task may disable itself. If a task is disabled, it 
cannot be initiated. 

6‘  9 9  . .  

St atemen t s 
As shown in figure I5 the functions of executives and 

tasks are defined in terms of statements. The 
STATEMENT construct is shown in figure 18. The 
executive and task statements are processed by the 
RTMPL utility to formulate the executable part of 
programs. Three types of statement are defined in 
RTMPL-assignment, conditional, and command. 
Assignment statements are used to establish values for 
local variables (those defined in the program containing 
the statement). Conditional statements are used to test 
values and to take specified actions depending on the 
result of the test. Command statements are used to 
provide simulation control, sequencing, and linkage to 

Task d e f i n i t i o n  

r------ - (task ID) 

Figure 17. - Task r e c o r d  specif icat ion. 
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State m P n t  

ASSIGNMENT * 

Figure 18. - Statements. 

COMMAND 

simulator hardware and software components. These 
statement types are described in detail in the sections 
Assignments, Conditionals, and Commands. 

Statements may be labeled by the user. Labels are 
names and are enclosed by the underscore character “-”. 
If a statement is not labeled by the user, the utility will 
supply a label based on the order of the statement in the 
program. The special assembler character “$” is used to 
generate this label. For example, the first statement in the 
program would be labeled by the utility as S$l if it were 
not assigned a label by the user. User-assigned labels 
must be unique names within the program. 

Statements are limited to 3200 characters, excluding 
spaces, returns, and line feeds. These three characters are 
ignored by the utility, providing flexibility for the user in 
formatting the source program. The number and 
complexity of statements are essentially unlimited by the 
utility. However, they are limited by the amount of user 
memory available in the host computer and the amount 
of program memory available in the target computer. 

c 

Assignments 
The ASSIGNMENT construct is defined in figure 19. 

The “ = ” character is used to denote the assignment of 
the computed value of an expression to a local variable. 
Although many languages (e.g., Pascal and Ada) denote 
assignments by the “: = ” combination (to differentiate 
an assignment from an equality), RTMPL depends on the 
user to properly apply the “ = ”  character. All local 
variables should appear as the result of assignment. The 

Ass i  “men! 

F igu re  19. - V a l u e  ass ignmen t  statements. 

utility will flag those that do not (Data-Base Files, 
Chapter 9). Data type (1, S, F, or B) must be maintained 
within an assignment (see the section Expressions). The 
expression must result in a value whose data type is the 
same as that of the local variable. 

Conditionals 
The CONDITIONAL construct is defined in figure 20. 

A conditional statement consists of the key word “IF” 
followed by an underscore character (all RTMPL key 
words are terminated by an underscore character in 
source programs), a Boolean expression (true or false 
value), the key word “THEN” (and its underscore 
character), a series of statements to  be executed if the 
expression’s value is true, and optionally, the key word 
“ELSE” (and its underscore character) and a series of 
statements to be executed if the expression’s value is 
false. Note that a Boolean expression may be formed 
from arithmetic expressions (data type I ,  S, or F) through 
conjunction with conditional operators (< , # < , = , # = , 
>, #>). The conditional operators are defined in 
table 11. For example, for integer expressions A, B, and 
C,  the Boolean expression 

A < B = C  

will be true if  the value of A is arithmetically less than B 
and the value of B is equal to the value of C; otherwise 
the Boolean expression will be false. The Boolean 

Condit ional 

EXPRESSION 
(Boolean) 

EXPRESS ION 
(ar i thmet ic)  \I 

/ 

-PEE-- (ari thmet ic)  
~- 

STATEMENT 

L-1 STATEMENT ’ * 

Figure 20. - Condi t ional  statements. 
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TABLE 11.-CONDITIONAL 
OPERATORS 

Less than 

Greater than 

aThe “ U “  character in RTMPL is 
interpreted as a logical NOT. 

expression, including the “IF” key word, has the same 
length limit as a statement. 

The CONDITIONAL construct is terminated with an 
exclamation point. The conditional statement 

IF-A THEN- B = C; 

is incomplete. The RTMPL utility will expect additional 
statements in the “then clause” (to be executed if A is 
true) or an “else clause” (to be executed if A is false). 
The following statement is a complete conditional: 

IF- A THEN- B = C; ! 

In this case no action is taken if A is false since the “else 
clause” is omitted. 

RTMPL permits nested conditionals. The use of the 
conditional terminator “!” allows the user to build 
EXEC and TASK records that have structures similar to 
the familiar Pascal “begin ... end” structure. The 
structure consists of conditional levels. For example, 

IF-A (main stream) 
THEN -... (level 1) 
IF-B 

THEN-. . . (level 2) 
IF-C 

THEN -... (level 3) 
ELSE -... 

! (level 3 terminator) 
I (level 2 terminator) 
! (level 1 terminator) 

Three nested conditional levels are shown. The various 
levels are indented for clarity. The level 1 test will be 
made if A is true. The level 2 test will be made if B is true. 
Since the “else clause” occurs before the termination of 
level 3,  it will be assigned to level 3 and executed if A and 
B are true and if C is false. If the example were rewritten 
as 

IF-A 
THEN -... 
IF-B 

THEN -... 
IF-C 

THEN-. 
! 

! 
ELSE -... 

I 

(main stream) 
(level 1) 

(level 2) 

.. (level 3) 
(level 3 terminator) 
(level 2) 
(level 2 terminator) 
(level 1 terminator) 

the “else clause” would be executed if A were true and B 
were false. Remember that the RTMPL format is free. 
The preceding example could have been written 

IF-A THEN-. . . IF-B THEN-. . . IF-C THEN-. . .! 
ELSE-. . . ! ! 

However, the structure is not evident in this form. The 
RTMPL utility provides a structured listing to aid in 
program debugging (see Chapter 8). 

Expressions 
An RTMPL expression is an ordered string of 

operation/operand pairs that is logically formulated by 
the user to produce a value. Two types of EXPRESSION 
constructs are available: the arithmetic expression (fig. 
21(a)) and the Boolean expression (fig. 21(b)). They 
differ in the type of value they produce and in the set of 
operations available. A Boolean expression can contain 
only Boolean operands (DTP = B). An arithmetic 
expression can contain only arithmetic operands of the 

Expression 

W q-]J 
(arithmet ic)  

(a) Ar i thmet ic  expression. 

Expression 

7 
OPERAND 
(Boolean) 

* r 

(b) Boolean expression. 

Figure 21. - Expression specification. 

23 



same data type (integer (I), scaled fraction (S), and 
floating point (F)). 

The data type of the value produced by the expression 
must be consistent with the data type requirement of the 
statement containing the expression. The required data 
type of an assignment statement is always the data type of 
the local variable receiving the assignment. The required 
data type of a conditional statement is always Boolean. 
Arithmetic expressions that are compared, by using 
conditional operators, must have consistent data types 
across those operators. For example, an integer value 
cannot be compared with a scaled-fraction value. 

The available RTMPL arithmetic and Boolean 
operators are given in table 111. Both sets contain unary 
and binary operators. Unary operators have a single 
operand and must appear only at the beginning of an 
expression. The “null” unary operator is contained in 
each set to indicate that a unary operator is not necessary 
unless a “negate” or “logical not” operation is required. 
Binary operators have two operands and must always be 
preceded and followed by an expression. 

Each operation is assigned the corresponding parsing 
value listed in table 111. These values are used by the 
RTMPL utility to  establish the order of calculation in the 
expression. Generally an expression is parsed from right 
to  left. An operator (and associated operands) is placed 
in the sequence when a subsequent operator has a parsing 
value not greater than its own. For example, the 
expression 

( - A  * B/C+D-E)  

would be parsed as 

TABLE 111.-RTMPL OPERATORS 

(a) Arithmetic expression 

Operator 

- 

+ 
Null 
+ 
- 

/ 

Type 

Unary 
Unary 
Unary 
Binary 

Interpretation 

Negate 
No  operation 
N o  operation 
Add 
Subtract 
Divide 
Multiply 

Parsing 
value 

(b) Boolean expression 

#$ Logical NAND 
Logical OR 
Logical NOR 

SAVE = D - E 
RESULT= - A  
RESULT = RESULT *B 
RESULT = RESULT/C 
RESULT = RESULT + SAVE 

This parsing rule should be followed by the user in 
writing an expression. 

Operands for arithmetic and Boolean expressions are 
defined in figure 22. Four operand types are common to 
both: 

(1) Argument 
(2) Multivariable function 
(3) Unary function 
(4) Parenthetical expression 

Boolean expression operands include the implicitly 
defined Boolean constants TRUE and FALSE and target 
Boolean variable names. 

The basic operand type is the ARGUMENT construct 
(fig. 13). This allows any constant or variable defined in 
the simulation to  be specified as an operand as long as its 
data type is consistent with the required data type of the 

0 erand r--- 
ARGUMENT 
(ar i thmet ic )  

b 

variable func t ion)  (qual i f ied) 

hNI\Mth ( u n a r v  func t ion)  

I I J I  

EXPRESSION ~ 

(a r i thmet ic )  

(a) Ar i thmet ic  expression. 

0 erand + 
(Boolean) 

EXPRESSION 
(quali f ied) 

NAME ( m u l t i -  
variable func t ion)  

NAME 
( u n a r y  func t ion)  

- 
L EXPRESS ION 

(Boolean) 
~ _ _  

NAME (target 
state variable) 

t 

(b) Boolean expression. 

Figure 22 - w e r a n d  specification. 
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expression. Specifying an external variable as an operand 
will cause that variable’s value to be transferred to the 
local program during execution; specification of an 
external constant as an operand will cause that constant 
to be defined in the local program file. 

An operand may be a parenthetical expression (Le., an 
expression enclosed within parentheses). This definition 
does not preclude nested parentheses. For example, the 
complex expression 

( - ((A/(B + C) + D)*E)) 

contains the following parenthetical expressions as 
operands: 

Operand 1: (B + C) 
Operand 2: (A/OPERAND 1 + D) 
Operand 3: (OPERAND 2*E) 

Since each parenthetical expression produces a value, the 
use of parenthetical expressions as operands dictates 
the parsing sequence of the complex expression. 
Parenthetical expressions are always parsed from the 
inside out. 

RTMPL supports two types of functional operands: 
(1) unary functions, which are functions of a single 
variable (e.g., SINE (ANGLE)) and (2) multivariable 
functions, which may have eight variables (e.g., 
INTEGRAL (RESULT, GAIN, DERIVATIVE)). 
RTMPL does not contain any inherent functions of 
either type. That is, the specific functions available to the 
user are those that have been established during the 
RTMPL utility implementation on the host computer. 
These functions are implemented as assembly language 
macros and are defined in the target definition files. The 
user should become familiar with those functions that are 
available for the target simulator. 

Functions produce values of specified data type. The 
user must select functions that are compatible with the 
required data type of the expression. For example, an 
implementation of the utility might support the sine 
function for both scaled-fraction and floating-point 
numbers (named SINSF and SINFP, respectively). Use of 
SINSF in an expression that is required to produce a 
floating-point value would be flagged as an error by the 
utility. 

All unary function names must be immediately 
followed by an expression in parentheses. This expression 
provides the value of the function argument. The unary 
function argument must always be of the same data type 
as the function. For computational sequencing the 
parsing value of any unary function is assumed by the 
utility to be zero. The computational sequence of 

(A + SINE(B + D)) 

would be 

RESULT = B + D 
RESULT = SINE (RESULT) 
RESULT = A  + RESULT 

The arguments of multivariable functions are enclosed 
in brackets and separated by commas. The arguments 
may be any expression with the following restrictions: 

(1) The functional arguments must not contain other 
multivariable function operands. Therefore multivariable 
functions may not be nested within expressions. 

(2) The data types of the function arguments must 
correspond to those specified in the target definition of 
the function. Unlike unary functions the data types of the 
function arguments have no required relationship to  the 
data type of the expression containing the function. 

For computational sequencing the parsing value of any 
multivariable function is assumed by the utility to be 
zero. The computational sequence of 

(A + INTEGRAL [STATEl, K/J,  B’C]) 

would be 

ARGl = B*C 
ARG2 = K/  J 
RESULT = INTEGRAL [STATE1 , ARG2, ARGl] 
RESULT = A  + RESULT 

Note that the value of each functional argument is 
determined in sequence from right to left. 

The RTMPL utility translates operators and functions 
into target-defined macro operations that are assembly 
language equivalents to the operator/function for the 
required data type. If an operator/function does not have 
a macro equivalent for the required data type, the utility 
will flag an error in the listing. To produce the desired 
precision of operator values and to accommodate 
particular sources of operands (e.g., register and 
memory), the target definition files can contain more 
than one macro equivalent for an operator for the 
required data type. For example, the “ + ”  binary 
operator for integer data types might be supported by the 
macro’s named 

ADD$IlRR ADD$IlRM ADD$IlRI 
ADD$I2RR ADD$I2RM 
ADD$I3RR ADD$I3RM 

where ADD$ denotes the operation, I denotes integer 
data type, the numbers (1,2,3) denote the precision of the 
result value, and the trailing letters specify the source of 
the operands. The operand source letters-R, M, and 
I-specify register, memory, and immediate data 
sources, respectively. A function can have only a single 
macro equivalent. The precision of its result and the 
source of its operands are inherent in its name. 
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For operators the utility may choose a macro 
equivalent. In those cases the utility will first look for a 
macro that provides the maximum precision of the 
operands. If a macro equivalent providing this required 
precision does not exist, the required precision will be 
reduced until one is found. If the precision of the selected 
macro equivalent is less than the required precision of the 
expression, a warning is issued in the listing. After the 
precision-based search is completed, the utility next tries 
to find a suitable macro equivalent that corresponds to 
the operand sources. 

Once the “best” macro equivalent has been selected, 
the operands are adjusted accordingly by inserting 
housekeeping macros into the computational sequence. 
These housekeeping macros consist of precision con- 
versions, loading registers from memory, loading 
registers with immediate data, and storing registers into 
scratch pad memory. These operations, of course, result 
in less accuracy and longer execution times. To aid the 
user in reformulating the program to improve accuracy 
and shorten execution time, a warning is issued each time 
a precision conversion macro is inserted into the 
computational sequence. This allows the user to 
reconsider the precision specified for the constants or 
variables identified in the warnings. 

After the parsing of scaled-fraction expressions the 
RTMPL utility will scale the computational sequence. 
Since only binary scale factors are allowed in specifying 
RTMPL variables and constants, a scaling macro is 
inserted where required in the computational sequence. 
This macro shifts the result of the preceding operation to 
produce the required scaling. Whenever a scaling macro 
is inserted, a warning is issued in the listing file. The user 
may use these warnings to improve the accuracy and 
shorten the execution time of the simulation. Initially the 
user may specify the scale factors of variables and 
constants to be just large enough to handle the expected 
maximum values. Using the scaling warnings from 
successive passes of the source files through the utility, 
the user may then adjust the scale factors according to the 
warning messages. Minimizing the number of warning 
messages shortens the execution time of the simulation. 
Special warnings are issued by the utility whenever a scale 
factor of a variable or constant is required to be larger 
than that specified by the user. This warning implies a 
potential overflow and should be given special attention. 
Underflows may also result from improper scale factor or 
precision assignments, but these are not detected by the 
RTMPL utility. 

Commands 
RTMPL provides 13 command statements to allow the 

user to implement program control, to interface to target- 
defined states, to utilize target library procedures, and to 

communicate between the various processors in the 
simulator. The availability of these commands to the user 
requires the generation and definition of the corre- 
sponding target macros for the RTMPL utility during 
system implementation. Since many of the commands 
depend on the configuration, firmware, and data paths in 
the simulator, the user should refer to simulator targeting 
information for command availability and description. 
Use of undefined command statements in user programs 
will be flagged as errors by the RTMPL utility. 

The COMMAND construct is defined in figure 23. 
Commands consist of key words (always followed by an 
underscore) and a command-dependent extension. 

REDO and EXIT Commands 

The REDO and EXIT commands are provided to  
enhance the flexibility of conditionals. RTMPL does not 
provide loop execution constructs such as 

FOR ... DO ... 
REPEAT ... UNTIL ... 
WHILE ... DO ... 
The REDO and EXIT commands, when properly used 
within a conditional structure, can provide the same 
effect. For example, to  raise a variable A to its Nth power 
(N L l), a Pascal programmer could write 

B : = A ;  
FOR I : = 2  TO N DO B : =  B*A; A :=  B; 

An RTMPL equivalent is 

I =ONE; 
-MULTIPLY- B = B*A; 
I = I  +ONE; 
IF- 1 < N THEN- REDO- MULTIPLY;! A = B; 

In general, an RTMPL requires more statements. 
However, the RTMPL program statements more closely 
reflect the actual machine operations and usually result in 
more time-efficient codes. This is important in devel- 
oping real-time simulations, where minimization of 
computation time can mean the difference between 
success and failure. 

As an example of the use of the EXIT command, 
consider the programming of Newton’s method for 
determining the square root of a positive number. In 
Pascal 

ROOT : = 1; 

EPSILON DO 
ROOT : = (NUMBERIROOT + ROOT)/2; 

WHILE ABS(NUMBER/SQR(ROOT) - 1 ) >  = 

The RTMPL equivalent is 
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F igure 23. - Commands. 

ROOT =ONE; 
-TESTROOT- IF- ABS 

THEN- EXIT-; 
ELSE- ROOT = (NUMBER/ROOT + ROOT)/TWO; 
REDO-TESTROOT ; ! 

(NUMBER/SQR(ROOT) - ONE) <EPSILON 

This example assumes the existence of the unary 
functions ABS (absolute value) and SQR (square). They 
must appear in the target definition files for the data type 
of the arguments. If no operand is supplied with the 

EXIT command, execution of the EXIT command will 
transfer program control to the statement following the 
exclamation point associated with the current conditional 
level. By supplying an operand, one can specify the 
conditional level to be exited. The statement 

EXIT-TESTROOT; 

would result in the same branching as the previous 
example. 

To program the complex conditional logic contained in 
the Pascal statement 

IF ((A < B) AND ((C < D) OR (E < F))) THEN G : = H; 

the RTMPL user could write 

-DOLOGIC-IF-A < B THEN- 
IF-C# < D THEN- 
IF-E# < F THEN-EXIT-DOLOGIC;! ! 
G = H ; !  

The double exclamation point terminates the C# < D and 
E# < F conditionals so that G = H will be computed if 
either conditional is false. Otherwise the conditional 
labeled “DOLOGIC” will be terminated and program 
control will be passed to the statement following the last 
conditional terminator(!). 

The redo command allows the user to specify any 
previously defined label as the operand and thus permits 
backward jumps only. REDO may be used only within a 
conditional statement. EXIT also may be used only 
within a conditional statement to terminate the execution 
of that or a higher level conditional statement. 

ENABLE and DISABLE Commands 

The ENABLE and DISABLE commands allow the 
user to enable or disable the execution of any task defined 
in the program file. A task is executed only if the task is 
enabled (see ENTER and DISPATCH commands). 
Tasks may also be enabled or disabled at run time by 
using RTMPOS. 

ENTER Command 

The ENTER command causes program control to pass 
from an executive to a specified task if that task is 
enabled. It is valid only if used in an EXEC record. That 
is, a task cannot enter another task. The statements 

ENTER-TASKA; 
ENTER-TASKB ; 

cause sequential execution of TASKA and TASKB. Upon 
completion of TASKA (see RETURN command) 
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program control would revert to the executive, which 
would then transfer control to TASKB. 

To minimize execution time, the ENTER command, by 
itself, does not preserve data registers. However, if 
executives of different priorities can execute a task, the 
RTMPL utility will change the ENTER command to a 
REENTER command. This will cause data registers to be 
preserved for reentry. The REENTER command is not 
available to the user but will appear on listings when 
generated by the utility. Scratch-pad memory conflicts 
are avoided by having a task scratch pad contained within 
executive memory space. 

DISPATCH Command 

The DISPATCH command is used to  restrict execution 
of a task until all of the external variables required by 
that task are available. It is valid only when used in an 
EXEC record. The target processor can sense through 
firmware when variables have been transferred to its 
memory from another processor. The statement 

DISPATCH- TASKA, TASKB, TASKC; 

will cause the local PREP to cyclicly test required 
variables for each task. If the variables for a task have 
arrived, the task is executed and marked complete. If  a 
task is disabled, it is marked complete without variable 
testing. Upon completion of TASKB, for example, the 
processor would continue cyclic testing of TASKC and 
TASKA until they have also been marked complete. 
When all tasks are completed, they are remarked 
incomplete and the statement following DISPATCH is 
executed. 

The RTMPL utility determines what external variables 
are necessary for DISPATCH. The utility does not 
provide for task reenterability when executed under 
DISPATCH. To avoid the problem, the user should only 
dispatch tasks from background executives. 

SET and RESET Commands 

The SET and RESET commands are used to manip- 
ulate the values of target Boolean variables. For example, 
the target processor may contain a bit in its status register 
that is a target Boolean variable called OVERFLOW. If 
the bit is automatically set when an arithmetic operation 
results in a register overflow condition, the statements 

A = B + C  
IF- OVERFLOW THEN- 
A = AMAX; 
R ESET-0 V E R FLO W ; ! 

will test the bit for an overflow in the computation of A. 
If  an overflow occurs, A will be limited and the bit reset 

in the status register. RESET assigns the Boolean value 
FALSE to a target state variable; SET assigns the 
Boolean value TRUE to a target state variable. 

EXECUTE Command 

The EXECUTE command is a general-purpose 
command that permits the user to execute any target- 
defined macro. Uses for this command depend strictly on 
the simulator definition. For example, a simulator macro 
could be defined that copies the value of the program 
counter into a preassigned location and terminates 
simulation processing. The macro could be called HALT. 
Then the statement 

EXECUTE-HALT; 

would cause execution of that macro. The present version 
of the utility does not permit the use of the EXECUTE 
command for macros requiring arguments. 

CALL Command 

The CALL command is used to invoke target library 
procedures. These procedures are prewritten during 
system installation and are, as needed, linked to the 
user’s program during generation of the assembly 
language program. Target library procedures commun- 
icate with calling programs via argument groups 
(Argument Groups, Chapter 4). Argument groups 
contain constants and variables of the same data type and 
precision. The RTMPL utility structures the assembly 
language representations of the argument groups and the 
CALL command to  pass the number of items in the 
group, the address of each item, and a processed value 
for each item to the procedure (Assembler Source Files, 
Chapter 9). The processed value may be used as an input 
argument to  the procedure (formulated by other 
procedures or by RTMPOS) or as an output argument 
(formulated by the procedure itself). Processed values 
should not be confused with assigned values, which are 
results of assignment statements (variables) or defined 
values (constants). Assigned values may be used as input 
arguments for procedures. These are obtained from the 
specified item address. RTMPL assumes that an assigned 
value will never be an output argument of a procedure, 
although this is possible. 

Target library procedures are useful for processing 
large volumes of data for display or analysis. Since their 
execution will normally be time consuming, they are 
usually not called from simulation programs but rather 
from RTX programs. For example, assume a procedure 
called SAMPLE exists in the target library and that its 
purpose is to  obtain current values of single-precision, 
scale-fraction variables for output to data files. The user 
would first define an ARGGROUP to specify those 
variables: 
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ARGGROUP: SAMPDATA= S1,25 [A,B,C,D]; E O R ;  

M 
H. 

R. 

This example specifies SAMPDATA as an argument 
group of DTP = S1 with a maximum of 25 items and 
initialized to contain four variables (A, B, C, and D). The 
procedure SAMPLE would be invoked as 

Displays message specified as object on user’s terminal 
Stops simulation execution and displays message specified a 

Reads argument group specified as object from disk data 
object on user’s terminal 

file to local Drocessor 

CALL-SAMPLE [SAMPDATA] ; 

When executed, SAMPLE would obtain current assigned 
values of A, B, C, and D and would store these values in 
their respective processed-value locations for use by the 
calling program. The calling program could then output 
the data to the disk by using the ADVISE command (see 
the next section). At run time SAMPDATA could be 
edited by RTMPOS to add up to 21 additional items of 
the same DTP to the argument group. Item removal and 
replacement is also possible. 

The CALL construct (fig. 23) allows more than one (up 
to eight) ARGGROUP’s to be specified as procedural 
arguments. This feature accommodates those procedures 
that require arguments of multiple data type and 
precision. Before using this construct the user should 
become familiar with the procedures contained in the 
target library and with their argument requirements. 

ADVISE Command 

ADVISE is used to interface a user program to 
RTMPOS. It consists of the command name, an action 
code, and an object. The action code is separated from 
the object by a decimal point. Table IV defines the 
function of the various action codes. For example, one 
could display a message, defined in the global data file as 

MESSAGE: 
TSLIMIT = STATION*S *TEMPERATURE* 
LIMIT*EXCEEDED; E O R ;  

by using the message advisory command 

ADVISE-M.TSLIMIT; 

When the command statement is executed, the TSLIMIT 
message appears on  the terminal screen. If the action 
code were changed to an “H,” the simulation would 

TABLE 1V.-ADVISORY ACTIONS 

kction 
code 

RTMPOS function 

stop. With the “M” action code the simulation 
continues. 

The “R” action code (read advisory) causes the 
referenced argument group to be read from local memory 
and processed (filed or displayed) by the operating system 
(RTMPOS). For example, to send the SAMPDATA 
argument group to a disk file after sampling, the 
statements would be 

CALL-SAMPLE [SAMPDATA] ; 

ADVISE-R. SAMPDATA; 

Because of the multitude of data that can be transferred 
by using the read advisory, it may only be used in 
programs that are to reside on processors with direct 
access to the interactive information bus (COMP’s). 

Execution of the ADVISE command causes a priority 
interrupt to be issued from the local processor to the 
FEP. The FEP stops executing the RTMPOS background 
executive, obtains the action code and object from the 
local processor, and takes appropriate action. The 
RTMPOS background executive is then resumed. This 
priority processing ensures prompt action when executing 
the ADVISE command statement. Local processor 
program execution is delayed, as required, for memory 
access by the FEP. This delay could be substantial during 
processing of an “R” action. These delays must be 
considered by the user when structuring the simulation 
programs. In most cases it is best to issue advisories from 
processors intended for the RTX function. 

ACTIVATE Command 

ACTIVATE provides the mechanism for initiating 
execution of foreground (priority level > 0) executives on 
the alternate processor in the local channel (i.e., a PREP 
may activate a COMP EXEC and vice versa). The 
operand must be the name of a foreground executive 
defined in the alternate processor program. For example, 
suppose that, in the program file DSCPREP. 
CHANNELA, a foreground EXEC record is defined as 

EXEC: DOTASKS [l]; 
ENTER-TASKA; ENTER-TASKB; 
EOR; 

and that the companion COMP file (DSC.CHANNELA) 
contains the statement 

ACTIVATE-DOTASKS; 

Upon execution of the ACTIVATE command statement, 
the COMP would issue an interrupt to the PREP. The 
PREP would respond by reading the desired priority level 
(1) specified by the operand DOTASKS. From this the 
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PREP would determine the foreground executive to be 
executed. If a lower priority executive were active (the 
background EXEC in this case), its execution would be 
interrupted, DOTASKS would be executed, and the 
execution of the interrupted EXEC would be resumed. If 
a higher priority executive were active, DOTASKS would 
be placed in a pending que. It would then be executed 
when all higher priority EXEC’S were completed. 

RETURN Command 

RETURN is used to terminate the execution of 
executives and tasks and must always be the last 

executable statement in each. It may also be contained 
within the body of a task or executive to  allow 
termination as the result of conditionals. Execution of 
RETURN in a task restores program control to  the 
executive from which the task was entered. If the task is 
reenterable, the saved registers will be restored. 
Execution of RETURN in an executive transfers program 
control to  the next lowest priority executive pending (see 
ACTIVATE command). If  no foreground executive is 
pending, the background executive is resumed. If the 
RETURN command is encountered in a background 
executive, program control returns to  the processor’s 
firmware. 
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Chapter 6: RTMPL Simulation 

The programming of a simple multiprocessor 
simulation will be used to  illustrate some major 
operational aspects of the RTMPL utility and as an 
example of the object and listing files. In this chapter the 
simulation is described, the RTMPL source files are 
generated, and the use of the RTMPL utility to process 
these files is presented. 

Description 
A jet engine dual-exhaust-nozzle system is illustrated in 

figure 24(a). The nozzle system was chosen as the 
simulation example because the mathematical model of 
the nozzle (also shown) is fairly simple and lends itself to 
straight-forward partitioning into multiprocessor pro- 
grams. The nozzle is modeled as two separate nozzles fed 
by separate core (CN) and duct (DN) sections of a 
turbofan engine (not simulated). It is assumed that the 
inlet conditions for the core and duct nozzles are known. 
They are pressures (PCN, PDN), temperatures (TCN, 
TDN), and weight flow rates (WCN, WDN). Both gas 
flows exit at the ambient pressure, PO. In the simulation 
the flow areas of both nozzles (ACN, ADN) are to  be 
calculated with the constraint that the sum of the physical 
areas for the two nozzles is equal to the actual physical 
area (AN). 

For the purpose of the example it is assumed that AN is 
specified as an input to the simulation and is read at the 
start of each computation interval through an analog-to- 
digital converter (ADC). For this simulation PCN, PDN, 
TCN, TDN, WCN, and PO will be parameters. These 
parameters can be adjusted by the user at run time by 
using RTMPOS. The duct weight flow (WDN) and the 
core and duct nozzle areas (ACN, ADN) will be 
calculated variables. Finally it is assumed that the 
variables ACN and ADN will be output from the 
simulation through a digital-to-analog converter (DAC). 

TON + Core 
WON 1 nozzle 

t 
AN 

(a1 Pictorial diagram. 

Segment 1 Segment 2 

KDN TON \ J Global 
PDN PO 

WDNA 

NWDNB 
r Sample 

,I’ breakup 

lbl Segments of data flow diagram. 

Figure 24. - Dual-exhaust-nozzle system. 

Mathematical Model 
For the dual-exhaust-nozzle system the given values are 

PO, PCN, KCN, WCT, TCN, AN, PDN, KDN, and 
TDN. All variables are expressed as computer variables 
to avoid dual definitions and are presented in table V. 
The equations used to model the system are 
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TABLE V.-SIMULATION VARIABLES AND PARAMETERS 

Identification 

AN 
ANF 
CFLC 
CFFN 
CFFNA 
CFFNB 
DFLC 
DFFN 
DFFNA 
DFFNB 
PO 
PRC 
PCN 
TCN 
WCN 
ACN 
ACNA 
PRD 
PDN 
TDN 
WDN 
WDNA 
WDNB 
WDNC 
ADN 
PREPDONE 
DUCT DON E 
JOBDONE 

Description 

Total nozzle physical area 
Total nozzle flow area 
Flow coefficient (core) 
Flow function (core) 
CFFN intermediate calculation (core) 
CFFN intermediate calculation (core) 
Flow coefficient (duct) 
Flow function (duct) 
DFFN intermediate calculation (duct) 
DFFN intermediate calculation (duct) 
Ambient exhaust pressure 
Core nozzle pressure ratio 
Core nozzle inlet pressure 
Core nozzle inlet temperature 
Core nozzle inlet weight flow 
Core nozzle flow area 
ACN intermediate calculation 
Duct nozzle pressure ratio 
Duct nozzle inlet pressure 
Duct nozzle inlet temperature 
Duct nozzle inlet weight flow 
WDN intermediate calculation 
WDN intermediate calculation 
WDN intermediate calculation 
Duct nozzle flow area 
Interchannel logic variable 
Interchannel logic variable 
Program-complete logic variable 

AN =AN + 800. where 50. IAN I 1600. 

ANF = 1.049 - 1.622E - 4 x AN 

PRC = PO/PCN 

0.825 if CFLC 10.825 

CFLC= 1.3635 -0.7158 x PRC 

1 .o if CFLC L 1 .O 

CFFNA = PRC0.7143 

0.2588 i f  PRCr0 .53  

CFFNA x CFFNB if PRC >0.53 I CFFN = 

PRD = PO/PDN 

ACNA = KCN x WCN x TCN1/2 

i f  CFFN 10.0 I O.O ACNA x CFFN x CFLC/PC 
ACN = 

if ACN = 0.0 

t:F - A m  
ADN = 

0.825 if DFLC50.825 

DFLC = 1.575 - PRD 

1 .o if DFLC L 1 .O 

DFFNB = PRD0.7143 

WDNA = KDN x TDN1/* 

0.2588 if PRD 10.53 

DFFNA x DFFNB if PRD >0.53 I DFFN = 

WDNB = DFFN x DFLC/WDNA 

WDNC = PDN x WDNB 

WDN = ADN x WDNC 

Model Partitioning and Allocation 
Before the model can be described in RTMPL, it must 

be partitioned and the resulting segments allocated to the 
processors in a selected configuration. The partitioning 
and allocation will depend on the number of channels in 
the simulator and the availability of COMP and PREP 
processors in the channels. Although the actual parti- 
tioning of mathematical models is not a primary topic of 
this report, it will be helpful to  understand how the 
example problem was partitioned and how data were 
transferred between the channels. Figure 24(b) shows a 
data flow diagram of the equations in the nozzle model. 
Note from the structure of the diagram that the model 
naturally breaks up into parallel segments, as indicated 
by the dashed line. The only “crosstalk” between the 
segments is the WDN calculation, which needs ADN 
from segment 1 and WDCN from segment 2. However, 
to  demonstrate the transfer of data in RTMPL, the 
diagram was broken up into two segments, as indicated 
by the solid line. The calculations of both WDCN and 
WDN were put into segment 1. 

Since the model breaks up into two segments, three 
channels were used: two channels for the model 
calculations (the DSC channels) and one for the 
input/output and user interaction (the RTX channel). 
Since it is assumed that there is a COMP and a PREP in 
each channel, the problem was further broken up into six 
segments as shown in figure 25, which was derived from 
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Figure 25. - Computational flow diagram. 

the data flow chart (fig. 24(b)). In figure 25, variables 
within the oval elements represent the equations used to 
calculate the variables. Other program functions are 
shown in rectangles. In general, the segments were 
partitioned and allocated to demonstrate RTMPL rather 
than the solution of the problem. For a time-critical 
problem care must be taken in allocating calculations. 
The philosophy used for the example problem allocation 
is as follows: 

(1) Channel 1 was selected as the RTX channel. 
(a) It was assumed that the PREP processor in 

channel 1 is connected to the outside world through ADC 
and DAC. Since it is desired to read AN from an ADC, 
the calculation of ANF was assigned to that channel. 

(b) The COMP processor in channel 1 was used for 
the input and adjustment of PCN, PO, etc., and for user 
interaction with the simulation. 

(2) Channel 2 was designated as the segment 1 channel. 
In general, calculations were distributed between the 
COMP and the PREP to demonstrate data transfers. For 
example, variables CFFNA and WDNC must be 
transferred from the channel 2 PREP to the channel 2 

COMP. Also ANF must be transferred from the 
channel 1 PREP to the channel 2 COMP. 

(3) Channel 3 was used as the segment 2 channel. Here 
also calculations were distributed between the COMP 
and the PREP to demonstrate data transfers. For 
example, DFLC and DFFNA must be transferred from 
the channel 3 PREP to the channel 3 COMP. Note also 
that WDNB must be transferred from the channel 3 
COMP to the channel 2 PREP. 

Thus the arbitrary breakup of the model has variables 
transferred from (1) a PREP to a COMP in the same 
channel, (2) a PREP in one channel to a COMP in 
another channel, and (3) a COMP in one channel to a 
PREP in another channel. 

Channel and processor assignments are shown on the 
left side in the computational flow diagram (fig. 25). The 
string of calculations/operations assigned to each 
processor is shown on the right side. Data transfer 
between processors is also indicated. Boolean variables 
PREPDONE, DUCTDONE, and JOBDONE were 
added to the simulation simply as a mechanism to 
demonstrate the ADVISE command. Although providing 
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some data transfer synchronization, they are unnecessary 
since the RTMPL utility automates this synchronization 
(Information Transfer, Chapter 1). 

Depending on the application of a simulation it is often 
desirable to include certain analytical computations to 
permit the gathering of data, the monitoring of simulator 
performance, and the control of the simulation 
execution. Under RTMPOS many analytical functions 
can be performed. Many of the RTMPL constructs are 
designed to support analytical functions. As discussed 
earlier, advisories allow the user to display messages and 
to stop execution on the basis of simulation performance. 
They also support the gathering of data structured in 
terms of argument groups. The CALL command allows 
analytical routines from the target library to be 
incorporated into the sirnulation. Task enabling and 
disabling may be used to control the execution of the 
analytical functions (as well as the mathematical model). 
The ACTIVATE command may be used to  trigger 
analytical functions on the alternate processor in a 
channel on the basis of occurrences in the local 
processor’s calculations. The example simulation 
incorporates many of these constructs. 

At run time the user specifies the parametric values and 
sets the simulation calculation update interval by using 
RTMPOS. During execution the simulation is repetitively 
calculated, once each update interval. The calculations 
on each processor proceed sequentially, as diagrammed 
in figure 25. The following paragraphs describe the 
desired sequence of operations. 

The PREP in the RTX channel (channel 1) reads the 
ADC for AN, and computes the flow area, ANF, for use 
on the COMP in channel 2. Its task is then complete until 
the mathematical model has been computed. This is 
determined by the Boolean variable JOBDONE, 
calculated on the COMP in channel 2. When JOBDONE 
becomes true, the channel 1 PREP writes ACN, ADN, 
CFFNB, and DFFNB to DAC’s and advises the operator 
of the completion of the calculation sequence. 

The DSC PREP in channel 2 controls the Boolean 
variables PREPDONE and DUCTDONE. They are used 
on the channel 2 COMP to advise the operator of 
calculation delays if the channel 2 PREP or channel 3 
data (respectively) have not arrived when required to  
complete the channel 2 COMP calculations. Note that 
CFLC and CFFNA are required for calculating ACN. 
PREPDONE is set after their calculation. The channel 2 
PREP then computes WDNC on the basis of WDNB 
computed in channel 3. When this calculation is 
complete, DUCTDONE is set. The channel 2 COMP 
then completes its calculation sequence by computing 
ADN and WDN and then setting JOBDONE true. 

The channel 3 processors work in tandem to calculate 
WDNB. Another PREPDONE variable is used to signal 

the operator of calculation delay due to PREP data 
(DFFNA) not arriving on time to complete the calcula- 
tion of WDNB on the COMP. 

The COMP processor in the RTX channel (channel 1) 
is assigned the task of sampling simulation data and 
transferring these data to the FEP for analysis. Argument 
groups are used in developing the RTX COMP to  present 
the run-time selection of the data items to be sampled. 

Model Translation to RTMPL 
RTMPL contains both a programming language for 

the mathematical model on the parallel processors and a 
set of commands for coordinating execution and 
obtaining data and for interaction of the simulation with 
the user and the real-time world. The different aspects of 
the language will be covered in the context of the sample 
problem. 

Equations (1) to (19) must be converted to RTMPL by 
using the constructs defined in figures 10 to 12 and 18 to 
22. This will be done for each channel and processor 
according to the variable distribution in figure 25. Note 
that no simulation equations are assigned to channel 1 
COMP, which is reserved for analysis functions. 

Channel 1 PREP 

The only two equations solved on the channel 1 PREP 
are equations (1) and (2). The constants in these 
equations are 1.049, 1.622E-4, 50., 800., and 1600. From 
the definitions of figure 12 

KlP049 = S1/1[ 1.0491; 

MINAREA=S1/11[50.]; 
MAXAREA = S 1 / 1 1 [ 16001; 
K2=S1/11[800.]; 

K1 P622M4 = S1/ - 12[ 1.622E-41; 

The variables are AN and ANF. From the variable 
definition of figure 11 

AN = S 1 / 1 1 [ 1600., 1600.1 ; 
ANF = S1/ 1 1 [ 1263.168,1263.168]; 

From figures 19 to  21(a) equation (1) becomes 

AN = A N  +K2; 
IF- AN < MINAREA 
THEN- AN = MINAREA; 
ELSE- 
IF- AN > MAXAREA 
THEN- AN = MAXAREA; ! ! 

Equation (2) becomes 
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ANF = KlP049 - KlP622M4 * AN; (21) 

Channel 2 PREP 

The equations solved on the channel 2 PREP are (3) to 
(5) and (18). The constants are PO, PCN, 1.3635, 0.7158, 
0.825, 1.0, and PDN. From the construct of figure 12 

KlP3625 =S1/1[1.3625]; 
KP7158 = S1/0[.7158]; 
KP825 = S1/0[.825]; 
KlP=S1/1[1.0]; 
PO = S1/6[14.7]; 
PCN =S1/7[14.7]; 
PDN = S1/7[14.7]; 

The variables are PRC, CFLC, CFFNA, WDNC, and 
WDNB. From the construct in figure 11 

PRC = Sl/ l [ l . / l . ] ;  
CFFNA = S1/1[ 1 . / l  .I; 
CFLC = S1/1[.825/.825]; 
WDNC = S1/2[.825/.825]; 

WDNB comes from channel 3 COMP, and from the 
figure 13 construct it is referenced as 

(channel 3 name).C.WDNB 

The equations are translated to  RTMPL. From figures 19 
and 21(a) equation (3) becomes 

PRC = PO/PCN; (22) 

and equation (4), from figures 19 to 21(a), becomes 

CFLC=KlP3625 -KlP7158 * PRC; 

IF- CFLC>KlP  
THEN- CFLC = Kl P; 
ELSE- 
IF- CFLC < KP825 
THEN- CFLC = KP825; ! ! 

Equation (5) is an exponential and can be solved by 
using a univariate function. The function will be defined 
as FUNl with the construct 

CFFNA = FUNl [PRXVALS,PRNVALS,XTO7143, 
PRC]; (24) 

where 

PRXVALS A S1/1,21 [O., .05,. 10,. 15, .20, .25, .30,. 35, 
.40, .45,.50, .55, .60,.65,.70, .75,.80,.85, 
.90,. 95,l .O] ; 

XT07143 = S1/1,21 [O.OOO,. 1177,. 1931 ,.2579,.3166, 
.3820, .4232, ,4724, .5 197,.5653, .6095, 
.6524,.6943,.7351,.7751,.8142,.8527, 
.8904, .9275, .9640,1 .OOO] ; 

The method is to calculate PRC, search the range of 
PRXVALS, find the corresponding values in XT07143, 
and interpolate. 

Equation (1 8) involves a transfer variable WDNB: 

WDNC = PDN * (channel 3 name).C.WDNB; (25) 

Channel 2 COMP 

The equations solved on the channel 2 COMP are (3), 
(6), (7), (9) to  (1 l) ,  and (19). The constants are PO, PCN, 
1.0, KCN, 0.2588, WCN, TCN, 0.53, and 0.0. From the 
constructs of figure 12 

PO= S1/6[14.7]; 
PCN = S1/7[14.7]; 
K I P  = S1/1[ 1 .I; 
KCN = S1/0[.5124]; 

KP53 = S1/0[.53]; 
ZERO = Sl/O[O.]; 
WCN = S1/8[0.]; 
TCN =S1/13[900.]; 

KP2588=S1/- 1[.2588]; 

The variables are PRC, CFFNB, ACNA, CFFN, ACN, 
CFLC, CFFNA, ADN, WDN, ANF, and WDNC. From 
the construct of figure 11 

PRC = S 1 /l. [ 1 ./ 1 .] ; 
CFFNB = S1/1[ 1 ., 1 . I ;  
ACNA = S1/11 [O. ,O.]; 
CFFN =S1/2[0.,0.]; 
ACN = Sl/lO[O.,O.]; 
ADN = Sl/lO[O.,O.]; 
WDN = S1/9[0.,0.]; 

CFLC, CFFNA, and WDNC are variables transferred 
from the channel 2 PREP. Thus from the construct of 
f igure 13 these variables a re  referenced as 
.P.CFLC, .P.CFFNA, and.P. WDNE, respectively. 

ANF is transferred from the channel 1 PREP and 
referenced as 

PRNVALS = 11 [21]; (channel 1 name).P.ANF 
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From figures 19 and 21(a), equation (3) becomes 

PRC = PO/PCN; (26) 

Note that this equation was also implemented on 
channel 2 PREP to avoid data transfer delays. Equation 
(6) uses the FUNl function and a square root univariate 
function (SQRT): 

FFNB = SQRT(K1P - FUNl [PRXVALS,PRNVALS, 
XT02857, PRC] ; (27) 

The variables are PRD, DFLC, and DFFNA. From the 
construct in figure 11 

PRD = S1/1[ 1 . / l  .I; 
DFLC = S1/1[.825/.825]; 
DFFNA = S1/1[ 1 ./ 1 .]; 

From figures 19 and 21(a) equation (8) becomes 

PRD = PO/PDN; 

and equation (12) becomes 
where 

PRNVALS = I1 [21]; 
PRXVALS = S1/1,2l[etc.]; 
XT02857 = S1/1,21 [etc.]; 

Equation (9) becomes 

ACNA = KCN * WCN * SQRT (TCN); (28) 

From figures 19 to 21(a) equation (7) becomes 

IF- PRC# > KP53 
THEN- CFFN = KP2588; 
ELSE- CFFN = CFFNB * .P.CFFNA; ! (29) 

Equation (10) becomes 

IF- CFFN >ZERO 
THEN- ACN = ACNA * CFFN * .P.CFLC/PCN; 
ELSE- ACN = ZERO; ! (30) 

Equation (1 1) becomes 

IF- ACN = ZERO 
THEN- ADN =ZERO; 
ELSE- ADN = (CHANNEL 1 name).P.ANF - ACN; ! 

(31) 

Equation (19) becomes 

WDN=ADN * .P.WDNC; (32) 

Channel 3 PREP 

Equations (8), (12), and (13) are solved on the 
channel 3 PREP. The constants are PO, PDN, 1.575, 
0.825, and 1.0. From the construct in figure 12 

PO = S1/6[ 14.71; 
PDN =S1/7[14.7]; 
KlP575 = S1/1[ 1.5751; 
KP825 =Sl/O[.825]; 
KIP = S1/1 [ l  .I; 

DFLC = KlP575 - PRD; 
IF- DFLC>KlP 
THEN- DFLC = K1P; 
ELSE- 

THEN- DFLC = KP825; ! ! 
IF- DFLC < KP825 

Equation (1 3) becomes 

(33) 

(34) 

DFFNA = FUNl [PRXVALS,PRNVALS,XTO7143, 
PRD]; (35) 

where 

PRNVALS = I1 [21]; 
PRXVALS = S1/1,2l[etc.]; 
XT07 143 = S 1 / 1,21 [etc.] ; 

Channel 3 COMP 

The equations solved on the channel 3 COMP are (8) 
and (14) to (17). The constants are PO, PDN, 1.0, KDN, 
TDN, 0.2588, and 0.53. From the constructs in figure 12 

PO = S1/6[ 14.71; 
PDN=S1/7[14.7]; 
TDN =S1/13[900.]; 
KDN = Sl/0[.50655]; 
KIP  =S1/1[1.]; 
KP2588 = S1/0[.2588]; 
KP53 =S1/0[.53]; 

The variables are PRD, DFFNB, WDNA, DFFNA, 
DFFN, WDNB, and DFLC. From figure 1 1  

PRD = S1/1[ 1 ./1.]; 
DFFNB =S1/1[1./1.]; 
WDNA =Sl/8[151.665/151.665]; 
DFFN = S1/2[0./0.]; 
WDNB = S1/5[0./0.]; 

DFFNA and DFLC are transfer variables from the 
channel 3 PREP; thus from figure 13, they are referenced 
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as .P.DFFNA and .P.DFLC, respectively. From figures 
19 and 21(a) equation (8) becomes 

PRD = PO/PDN; (36) THEN- DFFN = KP2588; 

Using the SQRT and FUNl functions we get equation 

From figures 19 to 21(a) equation (16) becomes 

IF- PRD# > KP53 

ELSE- DFFN = DFFNB * .P.DFFNA; ! 

(14) as Example Source Files 
DFFNB = SQRT(K1P - FUNl [PRXVALS,PRNVALS, 

The required RTMPL source files are a control file, a 
global data file, and program source files for the various (37) XT02857 ,PRD] ; 

Equation (1 5 )  becomes 

WDNA = KDN * SQRT(TDN); 

Equation (1 7) becomes 

WDNB = DFFN * .P.DFLC/WDNA; 

processors. The files are shown in figure 26 and will be 
described in detail for the example problem. 

(38) Control Segment Source File 

The control file for the simulation is arbitrarily named 
"DUALSIM" and is shown in figure 26(a). The 
construct for the file is given in figure 7. In the file the (39) 

. .  . 
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(c) DATAPROC channel, PREP program. 

I 

(d) DATAPROC channel, COMP program. 
Figure 26. - Continued. 
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( f l  CORESIM channe l ,  COMP program. 

F igure 26. - Cont inued. 

name of the simulation is DUALNOZZ; the volume (or 
disk) for the source, object, and data base is DEV1; the 
user number is 0; the number of channels is three. The 
first channel is RTX.DATAPROC; the second is 
DSC.CORESIM; the third is DSC.DUCTSIM. There will 
be global data, so GLOBAL.DUALNOZZ is specified, 
and the target file catalog name is MC68000. The global 
file name and the program file names-one for each of 
the six processors-must be the same as specified in the 
control file. The file names are 

Channel 1 program file: 
DEVl :O.RTXPREP.DATAPROC.SA 
DEV 1 :O.RTX.DATAPROC .SA 

Channel 2 program file: 
DEVl :O.DSCPREP.CORESIM.SA 
DEVl :O.DSC.CORESIM.SA 

Channel 3 program file: 
DEVl :O.DSCPREP.DUCTSIM.SA 
DEVl :O.DSC.DUCTSIM.SA 

Global file: 
DEV 1 :O.GLOBAL .DUALNOZZ.SA 

This is a VERSAdos format. 
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(h) DUCTSIM channe l ,  COMP program. 

F igure 26. - Concluded. 

Global Data Segment Source File 

The global data file format (fig. 9) consists of global 
constant (GLCNST) and message (MESSAGE) records. 
For the dual-nozzle simulation the file is shown in figure 
26(b). Note that the MESSAGE record contains eight 
messages that can be invoked at different parts of the 
simulation to advise the user of the simulation progress. 
The GLCNST record consists of all constants to be 
distributed to all channels. The dot in front of the 
constant means that the constant is a parameter. Note 
that the vectors needed for the FUN1 function are also 
included in the global data. 

Program Source Files 

RTMPL program files consist of at least one EXEC 
record and can include VARIABLE, CONSTANT, 
ARGGROUP, and TASK records. The construct for the 
program file is shown in figure 8. The construct, along 
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with the computational flow diagram of figure 25, was 
used to create the program files for the six processors. 

Channel I PREP.-Channel 1, the RTX channel, is 
given the name DATAPROC. The file name for the 
PREP is DEV1:O.RTXPREP.DATAPROC.SA. The file 
(fig. 26(c)) consists of one EXEC, three TASK, two 
ARGGROUP, one CONSTANT, and one VARIABLE 
record. The EXEC record is 

EXECGETAN [ O ] ;  

Since the first part of the diagram in figure 25 says to 
read an ADC for variable AN, the executive was 
arbitrarily named GETAN and given a zero priority level 
(fig. 7), which is a background or lowest priority (fig. 15) 
job. 

The actual reading of the ADC is done with the 
CALL- command (fig. 23): 



CALL- READ[ADCVAR,ADCCHN]; 

where READ is the target procedure, ADCVAR is an 
argument group containing the variable AN, and 
ADCCHN is an argument group containing the ADC 
channel number. ANF is then calculated by using 
equations (20) and (21). Note that the ACTIVATE- 
command is- used (fig. 23) if AN>MAXAREA or 
AN<MINAREA. This sends an interrupt to the 
DATAPROC COMP and the corresponding EXEC 
(BADADC) is activated there. Next a Boolean variable is 
checked to see if the simulation has completed the 
calculation of WDN in the channel 2 COMP. The 
ENTER command (fig. 23) 

E N T E R  JOBDONE; 

is used, where JOBDONE is a task that does the actual 
testing and must be defined in this source file. 

After execution of the JOBDONE task, ACN and 
ADN are written to  DAC’s by using the DISPATCH- 
command from figure 23: 

DISPATCH- WRTACN,WRTADN; 

where WRTACN and WRTADN are tasks that must be 
records written in this source file. The RETURN- 
command from figure 23 terminates execution of the 
EXEC. Finally an EOR completes the record. 

The WRTACN task record is then defined: 

.K1 =I1[1]; 

where the “.” indicates that it is a parameter, adjustable 
at run time. 

Argument groups are then defined for the read 
procedure. The construct is shown in figures 8 and 14. 

ADCVAR = S1/32[AN]; 
ADCCHN = 11/32[Kl]; 

For illustration the size of these argument groups is 
greater than one. Size 32 indicates that 32 variables can 
be read on 32 channels by adding items to these groups at 
run time. 

Channel I C0MP.-The file name for the COMP 
processor is DEV1:O.RTX.DATAPROC.SA. The file 
(fig. 26(d)) consists of two EXEC’S, one TASK, and one 
ARGGROUP. The constructs for the records are given in 
figures 16 and 18 to 22. 

The first executive is defined as 

EXEC:MAIN[O]; 

This EXEC is given the name MAIN with priority 0 (fig. 
17), meaning it is a background EXEC (fig. 15). Its 
purpose is to sample the values of variables at each cycle 
of computation. The E N T E R  command (fig. 23) is used 
to begin execution of GETDATA, which is a task to be 
defined later. GETDATA will do the actual sampling and 
transfer the data to RTMPOS. 

The second executive 
TASK: WRTACN; 

EXEC :BADADC [ 11 ; 
This is one of the DISPATCH- tasks. It is formed by 
using the constructs of figures 8 and 17. It uses the 
CALL- command (fig. 23) to call target procedure DACl 
with ARGGROUP ACNG. This procedure writes its 
argument to DAC one. A similar definition follows for 
WRTADN to write ADN to DAC two. 

The JOBDONE task is then defined. This task tests to 
see if CORESIM.C.JOBDONE is not set and redoes the 
test until it is. Note that the construct is from figures 8 
and 18 where -TEST- is the label name and IF, THEN, 
ELSE is a conditional. Once the test passes, it uses the 
ADVISE command (fig. 23): 

ADVISE- H.DPMESS: ! 

where H is an action code to stop the simulation and to 
print out DPMESS, which is a message in the global data 
files. This task can be disabled at run time by RTMPOS 
to enable continuous simulation. 

ACNG and ADNG are needed for the write-to-DAC 
tasks. They are formed by using figures 8, 13, and 14. An 
additional constant is defined as the AAC channel 
number: 

is defined to service the ACTIVATE command used in 
the PREP. The priority 1 indicates that this foreground 
executive will have priority over the background 
executive. This executive will halt the simulation if the 
AN value read from an ADC is outside the MINAREA to 
MAXAREA range. ADVISE- prints a message from the 
MESSAGE record in the global data file. 

The GETDATA task is then defined: 

TASK :GETDATA; 

This task uses the CALL- command (fig. 23) to call a 
target procedure SAMPLE for the DATA ARGGROUP. 
ADVISE- with R.DATA says to read the argument 
group data, which must be defined. ADVISE-R. must be 
on a processor tied to the interactive bus. The DATA 
ARGGROUP (defined by figs. 8 to 14) supports the 
SAMPLE procedure. Note that the arguments are 
defined with the argument specifications in figure 13. 

Channel 2 PREP.-Channels 2 and 3 are used to 
simulate the model equations. The channel 2 PREP 
program file (fig. 26(e)) is called DEV1:O. 
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DSCPREP.CORESIM.SA. It consists of one EXEC, one 
CONSTANT, and one VARIABLE record. The 
executive is defined as 

indicate that the calculations have been completed. The 
variable 

JOBDONE = B[TRUE/FALSE]; 
EXEC:PRFCTNS [O]; 

It is a background executive. The two Boolean variables 
PREPDONE and DUCTDONE are set false to indicate 
that calculations have not been completed. Values for 
PRC, CFLC, and CFFNA are then calculated. These 
calculations are given in equations (22) to (24). The 
PREPDONE variable is set true to indicate that the 
calculations have been completed. WDNC is then 
calculated from equation (25) (where “channel 3 name” 
is DUCTSIM). The variable DUCTDONE is set true to 
indicate that the WDNC calculations have been 
completed. The Boolean variables are defined, by figure 
11. as 

PREPDONE = B[TRUE/FALSE]; 

DUCTDONE = B[TRUE/FALSE]’ 

Channel 2 C0MP.-The channel 2 COMP source file 
is called DEVl :O.DSC.CORESIM.SA. The file (fig. 
26(f)) consists of one EXEC, one CONSTANT, and one 
VARIABLE record. The executive is defined as 

EXEC : MA1 N S I M [O] ; 

The EXEC is given the name MAINSIM with priority 0. 
The variable JOBDONE is set to false to indicate that 
calculations for this pass through the model have not 
begun. PRC is then calculated from equation (26). If the 
calculation overflows, the ADVISE command is used to 
halt the simulation and give the CORESIM1 message 
from the global data file. CFFNB and ACNA are then 
calculated from equations (27) and (28). A test is then 
made to see if the channel 2 PREP Boolean variable 
PREPDONE has been set true. If  PREPDONE =TRUE, 
no data transfer delay has been encountered. Otherwise 

-ADVISE-M .COREMES3; 

causes a printout that there is a delay. CFFN and ACN 
are then calculated from equations (29) and (30). If 
DUCTDONE is true, calculations can continue; 
otherwise 

ADVISE-M.COREMES4; 

causes a printout of the COREMES4 message from the 
global data file. The variables ADN and WDN are then 
calculated from equations (31) and (32). Note that 
DATAPROC is the name for channel 1. The variable 
JOBDONE (referenced in channel 1) is set true to 
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is added to the variables for this processor. 
Channel 3 PREP.-The channel 3 PREP source file 

(fig. 26(g)) is called DEVl :O.DCSPREP.DUCTSIM.SA. 
It consists of one EXEC, one CONSTANT, and one 
VARIABLE record. The executive is defined as 

EXEC : PRFCTNS[O] ; 

This is a background executive. The Boolean variable 
PREPDONE is set false to indicate that the calculations 
have not been completed. PRD is calculated from 
equat ion (33). The  target Boolean variable,  
OVERFLOW, is checked and, if true, command causes 
the simulation to halt and CORMES2 from the global 
data file is printed out. DFLC and DFFNA are calculated 
from equations (34) to (35). PREPDONE is set true to 
indicate that these calculations have been completed 
for the channel 3 COMP check. From the construct in 
figure 11 

PREPDONE = B[TRUE/FALSE]; 

is added to the program variables. 
Channel 3 C0MP.-The channel 3 COMP program 

file (fig. 26(h)) consists of three records: one EXEC, one 
CONSTANT, and one VARIABLE. The name of the file 
is DEVl :O.DSC.DUCTSIM.SA. The executive is defined 
as 

EXEC:COPROCES[O]; 

The EXEC name is COPRESS with priority 0. The 
variables PRD, DFFNB, and WDNA are calculated from 
equations (36) to (38). Then if PREPDONE is set true, 
the calculations can continue; otherwise 

ADVISE-.M.DUCTMESS; 

causes the DUCTMESS from the global data file to be 
printed. WDNB and DFFN are calculated from 
equations (39) and (40). 

In this example, it is assumed that the following 
macros have been written and specified for the 
appropriate data types in the target definition file: 

FUN 1 multivariable function that provides 
table  lookup and  interpolat ion 
according to value of input variable 

unary function that returns square root 
of operand 

SQRT 



Additionally, it is assumed that target library procedures The example source files are intended to illustrate many 
exist for the following: aspects of RTMPL. However, it was impractical to 

develop an example that illustrated all aspects. The and stores RTMPL utility is designed to aid the inexperienced user READ 

in becoming proficient in the language (e.g., it contains a 
SAMPLE Of Vecified multitude of warnings and error messages). True 

competence will come only with hands-on programming 
DAC1, DAC2 writes values to DAC channels experience. 

reads specified 
values in specified variables 

into argument group format 
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Chapter 7: Using the RTMPL Utility 

The RTMPL utility is designed to function under a 
disk operating system (DOS). The DOS file and 
input/output handlers are used to read and write the files 
required by the utility. The utility provides one link in a 
chain of DOS services necessary to bring a simulation 
from concept to execution. It is assumed that the initial 
Simulation concept has been developed. That is, 

(1) The equations describing the system to be simulated 
have been partitioned and assigned to simulation 
channels. The equations for each channel have been 
partitioned (if required) and assigned to the COMP and 
PREP. 

(2) The necessary real-time data analysis and 
input/output computations have been defined for the 
RTX channel. 

(3) The complete set of RTMPL source files has been 
generated. 

The source files are then processed by the RTMPL utility, 
producing data-base files for use by the RTMPOS utility 
and translated source files for the target assembler. The 
listing files produced by the RTMPL and assembler 
utilities and the results from their execution are available 
to the user for documenting and refining the simulation 
(if necessary). 

The RTMPL utility is invoked by using the DOS 
command 

RTMPL(DEF), (LIST); Z = (SIZE) 

This invocation is the form used in the VERSAdos disk 
operating system. The user should refer to specific system 
documentation if another DOS is used. Although 
command formats may differ between installations, the 
information required in the command line is generic (with 
the possible exception of SIZE). DEF is the identification 
of the simulation control file and LIST is the name of the 
file designated to receive the listing. Both of these files 
may be devices (the former being an input/output device, 
such as the user’s terminal, and the latter an output 
device, such as a printer). SIZE is a designation used by 
the DOS in assigning memory segments for utility use. 

The amount of memory required depends on the size of 
the simulation and must be determined by the user. 
Generally 500K bytes are sufficient for a typical 
simulation. 

After the command has been invoked, the utility will 
read the simulation control file. If the file has been 
assigned a device name (e.g., “#”, representing the user’s 
terminal), the utility will prompt the user for the required 
information. The simulation control file, DUALSIM, for 
the dual-nozzle example is given in figure 26(a), where the 
entries correspond to  the utility control segment structure 
in figure 7 and the options listed in table I .  

For the dual-nozzle example the RTMPL invocation 

RTMPL DUALSIM, #PR; Z = 100 

will process the source files of figure 26 according to  the 
simulation control file, DUALSIM, and will provide a 
listing file on the printer device (#PR). It reserves lOOK 
bytes of memory for RTMPL use. In this case the input 
and output files are defaulted to the user’s terminal. 

In the resulting user-terminal display (fig. 27) the 
RTMPL header is followed by the RTMPL interpretation 
of the simulation control file. The general format for 
each line is 

(PROMPT) = (TERMINAL ENTRY); (RETURN)* * * * 
(file entry) 

If the user terminal, rather than the DUALSIM file, had 
been identified as the simulation control file in the 
RTMPL invocation, the display would pause after “ = ” 

, the for user entry at the terminal. After each “ * * * * ”  
RTMPL interpretation of the entry is displayed. Any 
detected entry errors are displayed after the entry. 

After all entries have been processed, the total number 
of errors detected is displayed. If any errors have been 
detected, RTMPL processing is aborted. Otherwise 
utility execution pauses at this point (for 15 sec) to allow 
the user to  review the simulation definition. If  the user 
does not intervene (e.g., to redefine the simulation), the 
RTMPL utility processes the simulation source files. 
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As shown in figure 28, each major step in processing 
the simulation source files is displayed on the terminal. 
The global data file GLOBAL.DUALNOZ2 is processed 
first. At this point the specified listing file #PR is opened. 
The global data file is then read. If errors are detected in 
the file structure, RTMPL processing is aborted. Other- 
wise each record in the global data file is syntactically 
tested and transferred to the simulation data base being 
established by the utility. All messages, tasks, and global 
constants are thereby established for later reference by 
the program files. If any syntactical errors are detected, 
RTMPL processing is aborted. Otherwise the utility 
processes each program source file. Again, file structure 
is tested. If the structure is correct, the utility processes 

1 A I l  
IC, 1 I 
rn r  

TI / I  

F igu re  28. - User  t e r m i n a l  d isplay (dual -nozz le s i m u l a t i o n  processing). 

the local data segment definitions (i.e., variables and 
constants) and establishes these definitions in the data 
base. It also sets up executive and task definitions in the 
data base in preparation for statement translation. After 
these actions have been taken for each program, and if no 
errors have been detected, the utility rereads the 
programs to process argument group definitions. Again, 
the utility will abort processing if any errors are detected. 
If no errors have been detected, the utility begins 
processing the source statements contained in the 
execution segment of each source program. 

Statement processing consists of syntax and semantic 
testing in conjunction with parsing of the expression 
operations and operands. The parsed expression is then 
translated into assembly language macros for inclusion in 
the object file. If the SCAN option has been selected in 
the control file, RTMPL processing is complete. If the 
SCAN option has not been selected, and all statements 
in all source files have been processed without error 
(errors cause RTMPL to abort), the RTMPL object files 
(assembler source and data base) are generated. 
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Chapter 8: RTMPL Listing 

The RTMPL utility provides an extensive listing 
designed to aid the user in developing accurate time- 
optimized simulations. The listing also provides the 
documentation necessary to track simulation develop- 
ment and to allow engineering level interactive execution. 
The listing is generated concurrently with the processing 
of the simulation source files. Therefore, if the utility 
aborts because of source file errors, sufficient 
information should be available in the listing to aid in 
correcting the errors. 

The listing consists of two major parts-scan and 
documentation. These parts are further divided into a 
number of phases. The parts and phases are discussed 
here in terms of their relationships to simulation 
development and documentation. The discussion will use 
the dual-nozzle example listing (appendix A) as 
illustration. References to that listing include the listing 
page number, which appears on the the header line on 
each page. The header line also lists the simulation name 
(DUALNOZZ) and the date and time of the listing 
generation. 

Scan Listing 
This part of the listing provides the user with 

information obtained during syntactic and semantic 
verification of the simulation by the utility. It has two 
phases: the scan of the data segments, and the scan of the 
execution segments. The second phase is obtained only if 
no errors are recorded in the first phase. 

Listing pages 1 to 3 in appendix A show the results of 
the dual-nozzle data segment scan. The global messages 
and constants are scanned first. The listing of global 
operational tasks is included to service future extensions 
of RTMPL and should be ignored. After the global data 
are scanned, the local constants and variables in each 
program file are processed. (The execution segments 
(executives and tasks) are also identified although their 
statements are not processed until the next scan phase.) 
Finally the argument groups in each source program are 
processed. 

The simulation example contains no errors. If errors 
were detected, they would be listed in the appropriate 
segment of the scan in a self-descriptive format. All 
RTMPL error messages are listed in appendix B. The 
general error and warning format is 

(SOURCE DEFINITION) 

(ERROR!) (MESSAGE) (specifics) 

The offending source definition is listed verbatim. The 
errors are then listed; the designation (ERROR!) is 
followed by a message and specifics. The message 
describes the offense in general terms. The specifics relate 
the message to the specific part of the definition that is 
causing the problem. For example, the constant 
definition 

CONSTANT: 
ABC?DEF12=S1/07 2 [2., O.L] EOR; 

would produce the following error listing in the scan: 

ABC?DEF12 = S1/07 2 [2., O.L.]; 

ERROR! NAME EXCEEDS 8 CHARACTERS; 
ABC?DEF12 

ERROR! NONALPHANUMERIC CHAR(S) IN 
NAME: ABC?DEF12 

ERROR! NUMBER TOO LARGE FOR SCALE 
FACTOR: 2 

ERROR! ILLEGAL CHAR IN INTEGER: L 

In this example the constant name exceeds eight 
characters and contains an nonalphanumeric character. 
The scale factor (2") is not large enough to scale the 
specified value, 2. Finally the use of an alphabetic 
character (L) in the integer value was flagged as an error. 
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For the sake of clarity some messages will contain 
specifics within the message. For example, 

ERROR! UNDEFINED FOREGROUND EXEC 
(FOREEXEC) IN PROGRAM 

where “FOREEXEC” and “PROGRAM” would be 
specific source program names. The second phase of 
the scan is the processing of the statements that are in the 
execution segment of each source program. This phase is 
illustrated on listing pages 4 to 6 .  The results for each 
executive and task in each source program are listed. 
Again no errors were encountered in the example. 
However, a multitude of warning messages were issued. 
Their format is similar to that for error messages. All 
RTMPL warnings are listed in appendix B. 

Warnings are included in the listing to advise the user 
of potential problems or to suggest possible changes to 
the source programs that could reduce the time or 
improve the accuracy of the computations. On listing 
page 4, statement 2 of the GETAN executive causes the 
warning 

WARNING! AN MAY NOT BE COMPUTED YET 
(PAST VALUE USED) 

This occurs because the utility has not detected AN as the 
result (i.e., appearing on the left) of a previous 
equivalence statement. In this case, AN was derived by 
using the target procedure READ and the user would 
simply ignore the warning. Statement 9 in the GETAN 
executive causes the following to be issued: 

WARNING: CONSTANT RESCALING 
ENCOUNTERED:KlP049 RSF = 11 NSF = 1 

* * *  CREATED SC$l FOR RESCALING OF KlP049 

The nominal scale factor (NSF) is that assigned to  a 
variable or constant by the user in the data segment. The 
required scale factor (RSF) is that required to make the 
resulting scale factor of an expression compatible with 
the required scale factor of the statement containing the 
expression. This warning indicates that the constant 
KlP049 requires a scale factor of 211 (scale factor on 
ANF) instead of the specified 2l. No user action on this 
warning is required since a system constant (SC$l) is 
automatically created by the utility with the proper value 
and scale factor. Note that a similar warning is issued for 
statement 2 of the MAINSIM executive (listing page 5 ) .  
In this case, however, a system constant is not created by 
the utility since PO has been defined as a global 
parameter. The utility will scale as required to produce 
the specified result. The user could, however, improve 
the computational speed (eliminate an internal scaling 

operation) by redefining the nominal scale factor 
assigned to PO. 

Statement 2 of the MAINSIM executive also produces 
the warning 

WARNING! CONSTANT PRECISION 
ADJUSTMENT:PO RPRC = 2 NPRC = 1 

The nominal precision (NPRC) is that assigned to a 
variable or constant by the user in the data segment. The 
required precision (RPRC) is that required to make the 
resulting precision of an expression compatible with the 
required scale factor of the statement containing the 
expression. This warning is issued because the divide 
macro, selected from the target definition files, requires a 
double-precision operand but PO was defined as a single- 
precision parameter. The utility will insert the proper 
precision conversion macro. However, calculation time 
will be reduced and perhaps accuracy will be improved if 
the user redefines PO as a double-precision parameter. 

A final illustration of RTMPL warnings is shown for 
statement 23 of the MAINSIM executive. 

WARNING! MULTIPLE ASSIGNMENT OF JOBDONE 

is issued to indicate that the variable JOBDONE has 
appeared more than once on the left side of an 
equivalence (statement 1 also). In this case the dual 
assignment was intentional and the warning would be 
ignored. 

Documentation Listing 
Documentation, the second part of the listing, is 

provided if RTMPL processing has not encountered 
errors during scan. This part is made up of a number of 
phases, depending on the number of source programs in 
the simulation. They are 

(1) General simulation information 
(2) Global data segment 
(3) Local data segment 
(4) Executable statement segment 

Phases 3 and 4 are repeated for each source program. 
In the first phase (listing pages 7 to 9) information 

contained in the control segment is listed and all files used 
during utility operation are identified. The source, target, 
and object files are listed. The object files consist of 
assembler source files and data-base files. Each assembler 
source file corresponds to an RTMPL program file. Two 
types of data-base files are identified: global and 
program specific. The latter are produced for each source 
program. The number of records in each file is also 
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identified. These files need not concern the general user 
since they are used at run time by the RTMPOS operating 
system (see the section Data-Base Files). 

The global data segment listing is shown on listing 
pages 10 to 12. The operational messages are identified 
and listed. The global constants are identified as well as 
their data type and precision, values, scale factors, if any, 
and whether or not the constant is parametric. If a 
constant is multivalued, the values are tabulated below 
the main identification table. The first value in the 
multivalue table for PRXVALS is read as “one value at 
zero.” 

The last table in the global data segment listing 
identifies the transfer maps for data transmission in the 
simulation. The table specifies the source channel and 
processor and the variable name and destination channel. 
If a variable is only transferred to  the other processor in 
its channel, that is designated ‘‘local.’’ The table further 
specifies the transfer address in the destination channel’s 
external memory and the address where the transfer map 
is stored. Finally it specifies the data path to be used to 
implement the transfer. 

The local data segment for the COMP in the 
DATAPROC channel is given on listing pages 13 to 14. 
Other local data segments are given on subsequent listing 
pages to illustrate this listing phase. During this phase the 
characteristics of local variables, external variables, local 
constants, arguments, executives, and tasks are 
tabulated. 

Local variables are listed in terms of name, data type 
and precision, values, and scale factor, if any (e.g., listing 
page 16). Additionally the entry under the XREF header 
will indicate “YES” if the variable is referenced in 
another program. The entries under the PVAL header 
indicate the number of past values associated with the 
variable. Finally the absolute location of the variable is 
given. Note that in the DATAPROC (COMP) listing no 
user-defined variables are listed (listing page 13). Four 
target state variables are listed. All target state variables 
defined in the target definition files will always appear in 
this table. As is true with all variables and constants, an 
asterisk preceding the name indicates that the item is not 
used in the execution segment of the simulation. 

Variables external to the local program are identified in 
terms of name and assigned location. The “$0” 
appendage to the name indicates that the current value is 
used. 

Local constants (listing page 16) are tabulated in a 
format similar to that for global constants. In addition, 
the size (arrayness) and assigned location of the constant 
are provided. I f  a local constant is defined globally, it will 
be so indicated in the value entry. If  the value of a 
constant is used as an immediate data operand only, it 
will have no location assigned. In this case “IM-DATA” 
will appear as its location entry. 

Argument groups (listing page 16) are ‘tabulated in 
terms of name, data type and precision, location, 
maximum size, number of programmed entries, and an 
item list. The item list shows each entry to be initially 
contained in the group. The list may of course be changed 
at run time. For each entry the type and name are given. 
The types XV, LV, and CN indicate external variable, 
local variable, and constant, respectively. 

Tasks (listing page 17) are tabulated in terms of name, 
initial enable latch setting, reenterability, amount of 
scratch pad memory required, and the locations of the 
external variables required if the task is referenced in the 
DISPATCH command. 

Executives (listing page 17) are tabulated in terms of 
name, priority level, service tasks, and scratch pad 
memory requirements. Three types of scratch pad 
memory (exec, task, macro) are defined. These need not 
concern the user: they indicate the amount of temporary 
memory required to compute the executive proper and its 
service tasks and macros. 

An execution segment listing is illustrated on listing 
pages 18 and 19. It is the listing for the DATAPROC 
PREP. The executable statements of each task and 
executive in the program are interpretively listed to help 
ensure that the utilities interpretation of the program 
corresponds to the user’s intention. The general listing 
format is 

(STATEMENT NUMBER) (OBJECT LABEL) 
(STATEMENT) (CALCULATION TIME) 

The statement number is relative to its location in the task 
or executive. The object label is either the statement label 
assigned in the source or a sequential utility assignment. 
Utility label assignment is sequential within a program (as 
opposed to statement numbers, which are sequential 
within a record). The utility label, S$N, would be 
assigned to  the nth statement in a program if it was not 
labeled by the user. The statement, as listed, is an edited 
version of the corresponding source file statement. 
Unnecessary constant delimiters (semicolon, underscore, 
exclamation point) are removed to enhance readability. 
Furthermore statements within conditionals are indented 
proportionally to  the conditional level to  aid in 
identifying the structure of the program. Heavily nested 
conditionals can be easily identified. 

The calculation time listed to the right of the statement 
is an estimate (in machine cycles) of how long it will take 
to compute the statement on the target processor. This 
number is obtained by adding the calculation time (from 
target definition files) of each macro used in generating 
the assembly source for the statement. To convert this 
number to seconds, the user should multiply it by the 
cycle time of the target processor. The “MAX PATH 
EXECUTION TIME” appearing after the listing of the 
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statements is the number of cycles estimated for the 
calculation executive or task when the maximum time 
path is taken through the conditional statements. Note 
that in the case of the GETAN. executive the user should 
add the times for the library subroutine READ and the 
tasks JOBDONE., WRTACN., and WRTADN. to get 
the total estimated calculation time of GETAN. 

Finally the execution segment phase of the listing lists 
both the variables computed locally and transferred to 
other programs and those computed externally and 

referenced as operands in the local program. This listing 
is handy when accounting for data transfer times in 
partitioning the simulation. 

The RTMPL listing file was designed to aid the user in 
creating efficient simulation code. An attempt has been 
made to  have the utility generate meaningful messages to 
facilitate debugging and program optimization. The 
information in the listing file, coupled with that in 
the RTMPL object files, provides a comprehensive 
description of the simulation. 
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Chapter 9: RTMPL Object Files 

If no errors are encountered during translation of the 
RTMPL source files and the scan option is not selected, 
the RTMPL utility will generate two sets of object 
files-data-base files and assembler source files. The 
data-base files describe all elements in the simulation. 
These files are compatible with the RTMPOS operating 
system and furnish it with the information necessary to 
allow the user to interactively execute the simulation on 
the target simulator. The assembler source files provide a 
fully coded assembly language source program for each 
processor in the simulation. These files must be 
assembled on the target macro assembler and linked to 
form load modules. The load modules are then available 
for loading through RTMPOS at run time. This section 
describes these files from a user’s standpoint. For 
illustration the assembler source files for the 
DATAPROC channel of the dual-nozzle simulation are 
listed in appendix C. No illustrations of the data-base 
files are provided since these are not text files. Note that 
the format of the assembler source files depends on the 
requirements of the target processor assembler as 
specified in the target definition files. The files in 
appendix C were generated for the MC68000 assembler. 

Assembler Source Files 
The assembler source files are text files and may be 

listed by using the DOS. The resource name string used to 
identify an assembler source file contains the following 
components: 

VOLUME ID object volume name specified in 
simulation definition file 

USER NUM user number specified in simulation 
definition file 

CATALOG ID “OBJCOMP” or “ O B J P R E P ”  
depending on whether the source 
program is a COMP or PREP 

program 

FILE NAME logical name assigned to  source 

EXTENSION 
program channel 

“SA,” indicating a text file 

The assembler source file names for the dual-nozzle 
simulation are 

DEV 1 :O.OBJPREP.DATAPROC 
DEV 1 :O.OBJCOMP .DATAPROC 
DEV1:O.OBJPREP.CORESIM 
DEV 1 :O.OBJCOMP.CORESIM 
DEV 1 :O.OBJPREP.DUCTSIM 
DEV 1 :O.OBJCOMP.DUCTSIM 

T h e  0 B J C O M P . D A T A P R O C  a n d  O B J P R E P .  
DATAPROC files are listed in appendix C. The line 
numbers given are for listing purposes only and they are 
referenced in the following discussion of the example. 

The assembler source files consist of statements and 
comments. Comments are denoted by an asterisk in the 
first character location in the line. The comments are 
ignored by the assembler. Each statement is broken down 
into the following fields: 

LOCATION OPERATION OPERAND COMMENT 

(8 characters) (8 characters) (variable) (remainder) 

Each field is separated by one or more space characters. 
The location field contains mnemonic descriptors of the 
statement that are used for memory referencing. If 
referencing is not required, this field is filled with spaces. 
The operation field contains a macro name. The target 
code defined for that name will be substituted by the 
assembler for that name in the target macro file. The 
macro names used in the dual-nozzle simulation are 
defined in table VI. The available macros would be 
defined in the systems manual generated for the target 
simulator during RTMPL installation. The operand field 
contains the operands to be used by the macro. Multiple 
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TABLE VI.-DESCRIPTION OF MACROS USED IN 
DUAL-NOZZLE SIMULATION 

Macro 

ACTIVAT$ 
ADD$S1 RI 
ADVISEH$ 
ADVISEM$ 
ADVISER$ 
BACKEXEC 
CALL$ 
CVP$S12 
CVP$S2I 
DC$ 
DISPATC$ 
DIV$SlRM 
DIV$S2RM 
DL$ 
DN$ 
DS$ 
EQU$ 
ENTER$ 
EXIT$ 
FUN 1 
FOREEXEC 
HLD$Sl 
INCLUDE$ 
JF$OVERF 
JGTH$Sl 
JNEQ$Sl 
JNGT$SI 
JNLT$SI 
JTR$ 
LDI$SI 
LDM$BV 
LDM$Sl 
MUL$S2RI 
MUL$S2RM 
MUL$S2RR 
NOT$BVR 
ORG$ 
REDO$ 
RETURN$E 
RETU RN$I 
RETURN$T 
SCL$SI L 
SCL$S 1 R 
SCL$S2L 
SCL$S2R 
SLV$S 1 
SSP$Sl 
STV$BV 
STV$SI 
STX$BV 
STX$SI 
SUB$Sl IR 
SUB$S 1 RM 
SUB$SIRR 
SUB$S2RR 
SQRT 
T S T X V A $ 
TSTXVL$ 
XREF 

Description 

Implement ACTIVATE 
Add immediate data to register (DTP = SI) 
Implement ADV1SE.H 
Implement ADV1SE.M 
Implement ADV1SE.R 
Executive initialization 
Implement CALL 
Convert precision (1 -2) 
Convert precision (2- 1) 
Define constant 
Implement DISPATCH 
Divide register by memory (DTF = SI) 
Divide register by memory (DTP = S2) 
Define 32-bit word 
Define name 
Reserve storage 
Define address relationships to firmware 
Implement ENTER 
Jump to specified argument 
Multivariable function 
Executive initialization 
Store value for comparison 
Specify macro file 
Jump if no overflow 
Compare and jump i f  greater than 
Compare and jump if not equal 
Compare and jump if not greater than 
Compare and jump if not less than 
Jump if expression true 
Load register with immediate data 
Load register from memory (DTP = B) 
Load register from memory (DTP = S1) 
Multiply register by immediate data (UTP = S2) 
Multiply register by memory (DTP = S2) 
Multiply register by register (DTP = S2) 
Logical NOT 
Define load start address 
Implement REDO 
Return from background executive 
Return from foreground executive 
Return from task 
Scale register left (DTP = S I )  
Scale register right (DTP =SI )  
Scale register left (DTP = S2) 
Scale register right (DTP = S2) 
Store register in local memory 
Store register in scratch pad memory 
Send value via local bus (DTP = BV) 
Send value via local bus (DTP = S I )  
Send value via external bus (DTP = BV) 
Send value via external bus (DTP = SI) 
Subtract immediate data from register (DTP = S1 
Subtract memory from register (DTP = S I )  
Subtract memory from register (DTP = S2) 
Subtract memory from register (DTP = S2) 
Unary function 
Test currency from alternate processor 
Test currency from local bus 
External reference 

operands are separated by commas. In the example 
listings, “Dn” denotes the nth data register and “An” 
denotes the nth address register. Register mnemonics are 
target dependent. The comment field is not processed by 
the assembler and should be self-explanatory. 

Each assembler source file is arranged as follows: 
Required target macros (e.g., lines 9 to  176, 

OB JCOMP. DATAPROC) 
Control and initialization (e.g., lines 177 to 181, 

OBJCOMP .DATAPROC) 
Foreground executive maps (e.g., lines 182 to 203, 

OB JCOMP. DATAPROC) 
E n t r y  addresses  (e.g. ,  l ines  204 t o  210, 

OB JCOMP. DATAPROC) 
Simulation transfer maps (e.g., lines 211 to 273, 

OBJCOMP .DATAPROC) 
Transfer memory (e.g., lines 274 t o  362, 

OBJCOMP .DATAPROC) 
Local  var iables  (e .g . ,  l ines 502 t o  509, 

OBJPREP .DATAPROC) 
Program constants (e.g., lines 510 t o  513, 

OB JPREP. DATAPROC) 
Dispatch task list (e.g., lines 514 t o  518, 

OBJPREP .DATAPROC) 
Argument groups (e.g., lines 519 t o  572, 

OBJPREP .DATAPROC) 
Executable segment (e.g., lines 573 to  641, 

OBJPREP .DATAPROC) 
Target procedures (e.g., lines 642 t o  647, 

OB JPREP .DATAPROC) 
The following paragraphs describe these components of 
the assembler source file. 

The target macros define the assembly language 
equivalents for all RTMPL-generated macros in the 
program. These include assembly instruction macros 
such as INITIAL, DATASEG, and DATAEND (lines 9 
to 52, OBJCOMP.DATAPROC), RTMPL data transfer 
operation and command macros (lines 53 to 151, 
OBJCOMP.DATAPROC), and target library procedures 
referenced through the use of the CALL command or 
internally by other macros (lines 152 to  175, 
0BJCOMP.DATAPROC). The structure and content of 
these macros are arbitrarily set up by systems 
programmers to  meet specific target simulator 
requirements. 

The first statements to be assembled in every RTMPL- 
generated program are the control and initialization 
statements (INITIAL$ and DATASEG$). These 
statements set up the program for assembly by defining 
absolute interfaces with the simulator hardware and 
resident software and by furnishing any other 
initialization required by the target assembler. 

The foreground executive maps are used by the 
processor’s firmware to service the ACTIVATE 
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command that appears in the program for the alternate 
processor in the channel. The first location is reserved to  
hold the entry address of the active executive. All 
foreground executives are then listed in decreasing order 
of priority. For each, the entry address is followed by a 
busy flag and a pending flag. The busy flag is set by the 
firmware if that executive is being executed. The pending 
flag is set if the execution of that executive is being 
delayed due to  the execution of a higher priority 
foreground executive. 

The entry address part of the program contains the 
entry addresses of all executives and tasks in the 
program. They are used for various operating system 
functions at run time. 

The simulation transfer maps are used for 
interprocessor data transmission by the STV$/STX$ 
macros. They list the destination channels for each 
transfer variable in the simulation. The format is 

Destination channel codes (none, 0, 4, 8, ...) 
Expansion ( - 2) 
End of map ( -  1) 

A destination channel code is included for every channel 
requiring reception of the variable (“0” representing the 
first channel in the simulation, “4” representing the 
second, etc.). Since the value of a transfer variable is 
always stored in the transfer and external memory of the 
local channel, no destination code is required for the 
local channel. Expansion ( -  2) is included to allow the 
addition of another destination channel to the map at run 
time. The feature supports the run-time manipulation of 
argument group entries. The end of the map is signified 

The transfer memory allocation details the variables 
assigned to transfer and external memory. This allocation 
as well as the transfer maps is global. Therefore the 
allocations are identical in all assembler source files in the 
simulation. Each transfer memory allocation consists of 
a “CALC FLAG” (set appropriately by the firmware to 
indicate value currency), an initial-value assignment, and 
the variable’s transfer map address. These allocations are 
used by the TSTXVS$/TSTXVL$/TSTXVA$ macros to 
test the currency of data transfer. 

Local variable assignment details the memory 
assignments of all program variables not assigned to 
either transfer memory or external memory. Program 
constant assignment details the memory assignments of 
all program constants. The dispatch task list provides the 
argument for the DISPATCH command and lists the 
tasks to be dispatched. 

The argument group is represented in the assembler 
source file by a translation of the ARGGROUP 
construct. I t  contains the information supplied by the 
user in the RTMPL source program formatted into a data 
record compatible with both the argument requirements 

by - 1 .  

of target library procedures and the data-handling 
requirements of the RTMPOS operating system. In the 
0BJPREP.DATAPROC listing, lines 523 to  526 reserve 
memory for record identification information supplied 
by RTMPOS. This information identifies the record 
when it is downloaded into a run-time-generated disk file. 
It contains, among other things, the name of the 
argument group and the channel. Line 527 specifies the 
maximum number of items that can be contained in the 
group. Lines 528 and 529 are for RTMPOS record- 
keeping. Line 530 specifies the current number of items 
contained in the group. Line 531 specifies the number of 
words needed for a value of a group item. Following this 
are the addresses of all items presently contained in the 
group and memory reservation for the addresses of items 
that may be added at run time. Finally memory is 
reserved for values of each item in the group (line 533). 
These values are determined by the calling procedure 
using the group as an argument. 

Each target library procedure, invoked by the CALL 
command, that uses the group as an argument may 
handle the information described differently. For 
example, the read procedure invoked in line 579 uses the 
item addresses in ADCCHN to obtain ADC channel 
numbers and the addresses in ADCVAR to determine 
where the data are stored. This procedure does not use 
the memory reserved for values at all. The sample 
procedure invoked in 0BJCOMP.DATAPROC obtains 
values from the specified items’ addresses and stores 
them in the value locations reserved within the data 
argument group. It is therefore necessary that the user 
understand the action of all target library procedures 
invoked. 

The executable code segment contains the sequence of 
assembly language macros corresponding to  the 
executable statements of the source file. This code is 
separated into executives and tasks as specified in the 
source file. Each block of code contains overhead 
information necessary for execution. Executive overhead 
is as follows: 

(1) Macro scratch pad allocation-memory reserved 
for scratch pad required internally by macros resident in 
either the executive or its service tasks 

( 2 )  Task scratch pad allocation-memory reserved for 
scratch pad required for translation of service tasks 
(reserving task scratch pad here allows tasks to be 
reenterable) 

(3) Executive scratch pad allocation-memory reserved 
for scratch pad required for translation of the executive 

(4) Entry overhead-memory reserved for register and 
miscellaneous storage necessary to enter and return from 
the executive 

Memory is allocated by using one of the housekeeping 
macros BACKEXEC or FOREEXEC. 
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An example of task overhead is given in lines 415 to 
425 of 0BJCOMP.DATAPROC. First, the addresses of 
all external variables referenced in the task are listed, 
followed by the number of these variables. These 
overhead items are used in executing task DISPATCH 
command. The task overhead continues with the location 
of the task enable and complete latches (see ENABLE 
and DISABLE commands). Finally, a task entry 
overhead of two memory words is reserved and assigned 
the task name. Task execution begins at line 412. 

Finally, as shown in lines 645 t o  647 of 
OBJPREP.DATAPROC,  all referenced library 
procedures are invoked by RTMPL. This causes the 
procedures to be attached to the end of the program and 
simplifies the program linking process. 

Note that the example programs shown in appendix C 
were targeted to the MC68000 macro assembler. For 
other processors the basic program structure would be 
the same, but the macro content could be significantly 
different. 

Data-Base Files 
Data-base files are not text files and therefore may not 

be listed by using a standard DOS list command. They 
are files of Pascal records. Their format should be of no 
concern to the user (for more information, see ref. 3). 
Both RTMPL and RTMPOS contain facilities for listing 
the information contained in the data-base files in a 
usable form. All pertinent data-base information is given 
in the RTMPL listing. 

The data-base files generated for the dual-nozzle 
simulation are identified on listing pages 7 to 9 in 
appendix A. The catalog name (e.g., SIMDEF) indicates 
the type of information contained in the file. Global 
data-base files contain information pertaining to the 
simulation as a whole. Program-specific data-base files 
contain information pertaining to a particular program. 

Six global data-base files may be generated for a 
simulation. The SIMDEF file always contains one record 
and roughly corresponds to the simulation control 
segment. The MESSDEF file contains the global 
messages. The VALUEDEF file contains all values 
referenced in the simulation. The GLCDEF file contains 
the global constants. The OSTSKDEF file is not currently 
used but is reserved for RTMPL expansion. The 
PRGDEF file defines each program in the simulation in 
general terms. Note that, in the listing, if the number of 
records in a file is 0, the file was not generated for the 
simulation. 

Up to eight program-specific data-base files may be 
generated for each program in a simulation. LVAR, 
XVAR, CNST, and AGRP files define the program’s 
local variables, external variables, constants, and 
argument groups, respectively. The ALST file contains 
the items assigned to each argument group. The EXEC 
and TASK files provide pertinent information about the 
program’s execution segment. The TKLB file is used to 
support the DISPATCH command. 

The contents of these files may be modified to some 
extent by the user, through RTMPOS, to form a run-time 
data base. Copies of the run-time data base may be saved 
and used for different simulation starting conditions and 
to support simulation documentation (ref. 3). 
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Chapter 10: Concluding Remarks 

The real-time multiprocessor programming language 
(RTMPL) combines the efficiency and versatility of 
assembly language programming with the advantages of 
having an easily understood, engineering-oriented, high- 
level programming language. RTMPL is intended for 
time-critical applications (e.g., real-time simulation) and 
is suitable for programming the following simulator 
configurations: 

1. Multiprocessors with dual-bus communication 
2. Multiprocessors with single-bus communication 
3.  Multiprocessors with shared-memory communication 
4. Single processor 

RTMPL is a structured language that provides many 
program-development aids to help in producing time- 
efficient code. 

The language is targetable, not only to various 
simulator configurations, but also to various processors 
and macroassemblers. A targeting utility is available to 
automate the targeting procedures. The power of a 
macro-based language is determined by the assembly 
language macros written to support i t .  Multivariable and 
unary functions, firmware interfacing commands, and 
target library procedures have been incorporated in 
RTMPL. Other macros may be incorporated within the 
language structure t o  meet specific installation 
requirements. Since RTMPL supports both fixed-point 
(scaled fraction) and floating-point data types, 
operations on these data types can be incorporated (or 
not) to meet installation needs. For example, if a 
simulator includes an efficient floating-point processor, 
macros to support fixed-point operations might not be 
needed at all. 

The versatile targeting capability of RTMPL eliminates 
the need for designing special compilers or translators. If 
a new processor and its companion macroassembler fall 
within the targeting restrictions of the language, RTMPL 
can easily be targeted to this processor, thereby saving 
many hours of software development. 

RTMPL, coupled with its companion operating 
system, RTMPOS, provides for interactive execution of 
multiprocessor simulators at a level comparable to  analog 
computers. Data-base files are generated by the RTMPL 
utility for use by RTMPOS. This provides an extensive 
engineering-level interface between the users and the 
simulation at run time. Listings are provided to establish 
the dialog and to summarize and document the 
characteristics of the simulation. 

As is the case with initial versions of any language, 
there is room for improvement in RTMPL. At this time 
the following enhancements are contemplated: 

1 .  Reducing and streamlining the specifications of data 
type and precision and scale factor required for defining 
variables and constants 

2. Allowing the use of direct-value specification within 
expressions 

3 .  Extending the EXECUTE command to accept 
target-specified arguments 

4. Reducing RTMPL processing time by reducing the 
number of target definition file reads 

Since RTMPL is a research language, the implementation 
of these improvements will depend on user acceptance 
and response. 

The author and other members of the staff at the Lewis 
Research Center have a continuing interest in improving 
the cost effectiveness and utilization of real-time 
simulation. We hope that RTMPL and other RTMPS 
developments will provide a vehicle for constructive 
discussion and development of simulation techniques and 
standardizations to meet these goals. 

Lewis Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, January 14, 1985 
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Appendix A-Listing for Dual-Nozzle Simulation 

x x x x x x x x x x x x x x x ~ x x x X x x  
X X 
X SCAN .- SIIURCE FORMATP DATA SEGMENTS 
X + +C)lJAI...NOZZ X 
X X 
x x x x x x x x x x x x x x x x x x x x x x  

F'ROGRAM 'JAHIAE3LES : DE'JI. : 0 0 0 0 + RTX + DATAF'ROC + S A  
................................................................................................................ 

+ * + NONE I3COI.JNTERED 

PROGRAM EXlh:CLJTXUES: CIE'JJ.: 0 00  0 RTX C)ATAF:'RClC + SA 
............................................................................................. ............ .......- - --...... 

+ + 2 E:XECUTIUEr ( S 
0 ERROR ( S 1 

PROGRAM VARIARLES: DEV1:O0"~RTXF'REP~DATAF~'ROC+SA 

+ + 2 UARIAEI...E (S ) 
0 I:RROR ( s )  

. .... - -".-..---.-.-..--"- ...-.._________.._._ .................................. -----.---..--- 

PROGRAM EXECLJTI'JES : DErUl: 0 0 0 0 + RTXPREF:' +DRTAF:'RC)C: + SA 
.........-. ..... -....- - ....-..-__.--__..__.-_._-.___-._.__ . .-.-..- .. -..-..-.. ".--"- ....---- "-....I.-"- 

+ + I. EXEC1JTI:'JE: C S 
t 0 I_RROR( SI 
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KTMF'L L I S T I N G  : DUALNOZZ 11/27/84 10:28:52 PAGE 2 

PROC;KAM CCINSTANTS : DEV1.t 0 0 0 0 C>SC CORESIM 4 SA 
.." ......... _.._.... " .- ............................ - -.-.. _." -_..._...__ " -..-._.. ~ ~ ..... "__._ ..____" ._ 

9 CUNSTANT ( S ) . 0 ERROI?(Sj 

F'FCC)GRAM 'JARIAE3L..F:S : 

+ 8 VARIABLE ( S  ) . u E:RF2oK ( S  

D E V l  : 0 0 0 0 + DSC CUFXSIM SA 
.................................................................. I.... . ...... _.._....______.._.. 

PROGRAM EXECUTIVEIS : C)EIVI : 0 0 0 0 +DSC + COF<EISI:M SA 

PROGRAM TASKS : DEVI: 0 0 0 0 + DSC CClRESIM + SA 

PROGRAM TASKS: DEW1 : 0 0 0 0 + C)SCF:'FCEF' COHESIM 4 SA 
_._.............I.. .............. ..-.-.- - ............................ .."_._ -._ ......................... ...... -. .... 

+ NONE E.:NCOUN'TE-RED 

F'RC)GFChM CONSTANTS : DEVI. : 0 0  00  I X C  + DIJCTSIM SA 
.................................. . .......- "..--.--_." .... ........... -..... ...................... ..""......- 

+ e + 3 
+ * O  E:RROR(S) 

CONSTANT ( S ) 

PROGRAM EXEC1JTIVE;S : DEIVl : 0 0 0 0 + DSC DUCTSIM S A  

+ + 1 
....... ..................................................................................... ---- -..-".I 

EIXE:CUTR:VEC ( S ) 
+ + o r t : R r m  ( s) 
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PROGRAM TASKS : DEUI : 0 0 0 0 + DSC D U C T S I M  + SA 
................................. . ..--........ ....... "_ --_-.I--̂ .- 

+ + + NONE ENr;O\JNTE:RED 

PROGRAM CONSTANTS: DEU1:0n0O+DSCPKEP,DUCTSIMISA 
.._.....__._ ..- .............................................................................. .....-........ 

t + + :3 
*0 ERROR(S) 

CONSTANT ( S  ) 

F'ROGRAM EXECUTIVES: DEU1 : 0 0 0 0 + DSCPREP + C)UCTSlM +SA 

P w x R m i  ARGUMENT GROUPS: DEUI:OOOO+RTXPREP+DATAP~OC.SA 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

+ + + 4 ARGUMENT GROUP ( S  ) 
+ 0 IZRRUH(S) 

PROGRAM ARGUMENT GROUPS : DEVI:  0 0 0 0 DSC . C U R E S I M  SA 
....-.....-. "...-I....-._." .._._ "__" .._.I____.._" ................................ ........"..... .... I.---.""....-_".......-..-. 

+ + + NONE ETNCOUNTEXED 

PROGRAM ARGUMELNT GROUPS : C)EU1: 0 0 0 0 + D8CF:'REF:' + CORESIM + SA 
......"-....."---.-I ____ ......_ ..... __  .__ _ _  ........ ....__ .......... _- .-.- .... ...."...,..-......"_-I" I.I ---- --. ..... 

+ + + NONE ETNCOUNTERED 

PROGRAM ARGCJMEZNT T;F<OUF''S : C)EUI. : 0 0 0 0 + DSC +DlICTSIM + SA 

+ + NONE ENCOCINTEREU 
... .............--___.._.. __....___.._.____ . ._........_-_....-.-- ..............".... ............- 

PAGE 3 

PROGRAM ARGUMENT GROUPS : C)EV1. : 0 0 0 0 + DSCF:'REF" + DCJCTSXM + SA 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

+ + NONE ENCOUNTERED 
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RTMF'L. I...ISTING : D1IAL.NOZZ 1.:1/27/84 1.0 : 28: 52 PAGE 4 

x m x m x x m m x x m * m m m r m m  
X X 
x SCAN -. EXECUTABLE SEGMENTS X 

X . .C)UALNO%Z X 

X m 
x x x m x r x x m m m m m x m x m m  

+ + a 2 
* a 0 ERKOR(S) 

STATEMENT ( S )  

a + a 3 STATELMENT ( S i )  
+ a 0 ERR(1R ( S )  

a a 4 12 
a 0 ERHOW(S) 

STATEMENT ( S  ) 

M A I N S I M  ELXE:C:I.J'T:I:VEZ : DEZV1 : 0 0 0 0 a DSC a COREZSIM SA 



+ t 23 
+ . . 0 ERRCIR { S) 

STATEMENT ( S  ) 

COPROCE 9 EXEC:UTI'JE: D E V l  : 0 0 00 + DSC UUCTSTM SA 
-... ............................................................... ...__..__-.l._.-l.l .-..... .......................... 

1 F'RD=PO/PDNi 
HARNING! CONSTANT PRECISION ADJUSTMENT :PO 
WARNING ! CONSTANT RESCALING ENCOUNTEliED : F'0 

HFRC-2 NF'RC=1 
RSF=€3 NSF=h 

RSF=1 NSF==O 
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RTMF'L I...ISTING DCIAI ... NCIZZ 11/27/84 10 : 28: 52 PAGE: 7 

x x x x x m x x x x m x x x m x x x m  
X Y 

x GENERAL SIMULATIDN INFX3RMA'KCDN X 
x *DUAL..NCIZZ X 
X x 
x x x x x x x x x m x m x x x x m x x  

DEZXXXPTI[JN : RTMF'L. TEST CASE 

IJSER NUME:ER : 0 00 0 
S:LWI ... ATOR CONFIGURATICIN : C)UAI_. 
NUME:E:R LIF CHANNELS XN SIMUL.ATION : 3 

ORIGINATORS NAME : DALE J+ AFWAS3: 

GL.C.)BAI... SCIURCE FYU...EI 
xxmxxxmxmxmxxxxxxm 

DEu1:000o.GLOB~L*DUALNOZZ.SA 

ASSEME3LER SOURCE F I L E S  
xmm~xmxxxxxxxxxxxxxxxx 

DEVI. :0000 +OBJCOMP+DATAFkOC+SA 
DEWl. : 0 0 0 0 + OE: JPREF' + DATAF'ROC +SA 
DEW 3. : 0 0 0 0 + OBJCOMF:' + CORESIM + SA 
DEW1 : 0 0 0 0 + OBJF'KEF' + CORESIM t SA 
DEW 1. : 0 0 0 0 + OE: JCQMP + DUCTSIM + SA 
DEWI : 0 0 0 0 + Of: JPREF'+ DUCTSIM t SA 

GLOE:AL DATA RASE FILES 
xxmxxYYx~xxm~xxxmm~xxx 

RESOURCE NAME STRING # UF: RECORDS 
-_-_____I^_-.-....- ----I- ........-....----....--- 

UEW~:OOOO,SIMDEF+DUA~NOZZIDB 1 
DEU1:OOOO+MESSDEF+DUAL~OZ~.D~: 8 
DEW1~0000~UALUEOEF:~DUALNOZZIDG 1.44 
DEWI:OOOO+GLCDEF.DUAL.NOZZ+DB 12 
DEU I. : o o a o OSTSKDEF . UUALNOZZ . C)F 0 
DEUI:OOOQ,PHGDEF+DUALNOZZ+D~ h 
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:I. 
I. 

I 6 
2 
:I. 
I. 

I:) F' I?E c1:) la::) c2 
.............. 

b 
,-, 
"I 
3 

4 
6 6:. 

I. 

3 
7, 
\.I 
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Q OF' F2E:CORDS 
^" ". 

1. 0 
1. 

:I. 3 
I1 
0 
3. 
o 
0 

RE:SOUHCE NAME: S T R I N G  Q OF RECCIRC>S 
............. .-- ........... -- ........................ - .-._. ............... 

I:EV I. : o o o a + LUAR + CNJCTSIM + DE: 9 
IEV:I. : o o o 0 + xww + ISIJCTSIM + DE: 3 
DEV 1 : 0 0 0 0 + CNST + CNJCTSIM + [>E: 1.2 
nii:vi. : 0 o o a + A(;RF' + DUCTSIM + DE: 0 
DEVI. : o a o o AI ... ST + DUCTSIM + oe 0 
I3EVX ! 0 0 0 0 +EXEC + DUCTSIM DE: 1 
DEUI Q 0 0 0 + TnSE + UIJCTSICM + DE: 0 
DEVI. : 0 0 0 0  +TI~:I.-R+DI.ICTSIM~DE: 0 

8 
0 

3.1. 
I1 
0 
:I. 
0 
o 
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PAGE! 3.0 

NAME 

1-63 LS E:: 
F:' 0 
1"C:N 
FZ'DN 
lv2 NU AI ... s 
F:'RXUALS 
TC:N 

'r RUE 
MCN 
XT (12857 
XT C)7 14 3 

' r m  

1Y.J ALNC) ZZ MIJI ... T I  V A I...IJED G I...C) 1361 L. (XI NS T A NT $3 
xxxXxxxxxxxxxx~Yxxxxxxxxxxxxxxxxxxxxx 

1. [a 
1 Ci  
1 L? 
1 G? 
I. (a 
I. ti? 
1 (a 
1 c!! 
I. [a 

F'IIXUALS 

0 0 0 0 0 0 0 0 0 I:+ 0 0 0 
5 + 0 00 0 0 0 0 OE:--O 02. 
I 0 0 0 0 0 0 0 0 I:::-- 0 0 1. 
3. 90 0 0 0 0 0 OEI..-O 0 1. 
2 0 0 0 0 0 0 0 01:-0 0 I. 
2 5 0  0 0 0 0 0 OE-..O 0 1 
3.0 00 0 0  0 0  OE-0 0 1. 
3 + 50 0 0 0 0 0 OE:-.O 0 1. 
"t + 0 0 0 0 0 0 0 01:-o 0 3. 

...-.I" ".._"_." ......... 



PRX'JALS (CONT t 1 
.. -- 

3. I? 
:I. e 

9 0 0 0 0 0 0 0 0 E-- I1 0 3. 
Y 5 u 0 0 0 0 0 0 E-- 0 0 1 

3. I'? I . , O O ~ ~ ~ ) ~ O K . ~ . ~ O O  

XY 02857 

:I. C? 
3. G! 
1. @ 
3. I? 
s. @ 
:I. I? 
1 c!! 
I t9  
1 G? 
1. (? 
1. c!! 
If.!! 
1 C? 
3. I? 
1 C? 
3. @ 
1 c!? 
1 [? 
1 r!! 
l e  
:t C? 

3. @ 
1 C? 
1 @  
3. c!? 
l @  
1 c!! 
3. @ 
1 G ?  
I r;, 
1 e 
3. c, 
1 @  
1 @ 
1 C? 
3. G! 
I. r!! 
1 @  
I C ?  
3. e 
1 c!? 
3. e 

0 + 0 0 0 0 0 0 0 0 E + 0 0 0  
4 + 2490 I) 00 OE-..O 01. 
5 . 18 0 0 0 0 0 DE-- 0 0 1 
5 8 1 b 0 I) 0 0 0 IC- 0 0 3. 
A 3 11 4 0 0 0 0 0 E-0 0 1 
6 730 0 0 0 0 OE--0 0 1. 
7 + 0 8 Y  0 0 (1 0 0 E- 0 0 1 
7 + 4090 0 0 0 DE-O 0 i. 
7 6970 0 00 0Er-O 0 1 
7 +960 0000 OE-001. 
8*20300000E-001 
8.430 0 0  00 0E.-II Ol. 
8.64200 0 0 OE-0 01. 
8,8420 0 0 0  OE-0 03. 
Y 031 0 0 0 0 0EL-O 0 1 
9 + 2 3.1 0 0 0 0 0E- 0 0 1 
Y 3820 0 0 0 OE-0 0 1 
9 + 5460 0 00 OE.-.O 0 1. 
9 + 7 0 3  0 0 0 0 OEr-0 0 3. 
'3 855 0 0 0 0 OE- 0 0 3. 
:I. * 0 0 0 0 0 0 0 0 E + 0 @ 0  

XTn7143 

0 0 0 0 0 0 0 0 0E+I10 0 
l +17700000E-001 
:t 93 1 0 0 0 0 0 E- 0 0 3. 
2 + 575'0 0 0 0 0Ê r-O 01 
3 16600 00 OE-.IlOl 
3. E1200000 DE-003. 
4 * 2320 0 0 0 OE-0 0 1 
4*72400000E-001 

5 + 6 5 3 0 0  00  0E:-0 0 1 
h+0950000OE-001 
6 + '52400 OOOE-0 01 
6 94300 00 OE-O 03. 
7 + 353. 0000 OEZ-0 0 1 
7 751 0 0 0 0 0E-00 I 
8 + 3.4200 00 OE-0 01 
k3 5270000 0E-0 03. 
8+?0400000E-001 
'?*2750OOOOE~-~l101 
Y*640000OOE-001 
3. 0 0 0 0 0 0 0 OE+O 00 

.....-....._....-.... .."-..----.....-.......I 

s.1.w o o o o nE-0 IJ I. 
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7938 
7946 
7954 
796Z 
797 0 
7978 
79863 
79Y4 
13 [I 0 2 
8010 
(3 0 3.8 
8026 
El1134 
0042 
8 0 5 0 
8058 
8 0 66) 

5 Y 4 8  
5954 

I? 1-E: IJS 
X-E:.:C!fi 
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RTMF'L. L.ISTING : DUAI~.NOZZ: 11/27/84 3 0 : 28: 52 PAGE 1.3 

LOCATION 
........ 

7962 
7970 
7938 
7946 
7986 
8042 
7978 

NAME rw VALUE SGRL FAC PRM'TR S IZE LOCATION 
.-" .... .... .." ...... " ..-... ".__"..^._ ....._-. "._" _...._.__lll.._.___.-, ".."" I.̂ _I -----"..----_"e-.-- .... ---"I .... --""--"I..--"-.""---- 

MINAl iEA SI 5 ~ 0 0 0 O Q O O O E + O O 1  E411 NO 1 IM-DATA 

NAME TYB LOCATICIN SIZE USED ITEM LIST 
-..--.---.--..-I."."_1"_.." _I_- ".."_ 

DATA 81 10000 16 7 1) XU: DATAPROC.P+ANIO 
2) XU: DATAPRQC+P+ANF%O 
3 1 xu: CCIRESIM * c . ACNSIO 
4) XU: CORESZM +C + ADN$O 
5) XU: CORESIM+C.PRC%O 
6 )  XU: DUCTSIM+C*PRD%D 
7 )  xu: CORESIM.C.WDN%O 
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RTMPI ... LIST ING : DCIAI...NQZZ 3.1/27/84 I. 0 : 28 52 

M A I N  , EXECI.J'TIVE : L-,EUl. : 0 0 0 0 R T X  +DATAIVXIC + SA 
_..I....__"._.._.I.-..-" .-.-. .... .......--.........- " --......-- .." .... -..---I- I__.I_." -.--. 

I. S$1 EN'T'ER GECTDATA 
2 S82 F;E:TI.JRN 

MAX F'ATI-1 E X E C U T I O N  T I M E :  56 CYCLES ( HITIiUUT COMPUTE DEL.AYS) 
+GE:TDATA + 

1. S63 IF + F' + AN= F' + MXNAREIA 
TI-IEN 

ELSE 
2 SQ;4 A D V I S E  ti + ADCMESSl 

3 sQ;::i A D V I S E  H+ADCMESS2 
4 !366 RETURN 

MAX PATH E X E C U T I O N  TIME:: 346 CYCI-ES (LIXTHUUT COMPUTE DELAYS) 

..__ 

1 S$7 CALI ... SAMF'I...ET: I M T A  1 

3 S%? RETURN 
2 S9;8 AU'J1:SE I? + CMTA 

m w w w w E : D  VARIAE:I_.ES 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

*NONE 
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DATAF'FKIC F'RE--PRC)CE!3SOR LOCAL. UARIARLEZ?; 
xxxxxxxxYxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

NAME UTP IC UAL.IJE tWL.D UAL.I.IE SCAI .. FA(: XREF PUAL. LOCATION 
I_ .... ....... ".."_ ........ ._".. .......... ".._".. ........... ___ ................ "........._I.. ....... ..... ..---. ............ _"......"..I.. ............ ............................ ......... -.- -"-.. ........ 

AN SI. l + h 0 0 0 O E + 0 0 3  Z * h O O O O E ~ + O 0 : 3  1::+1 1 YES 3. 1 0  0 (12 
ANF SI 1 +26317E+003 1. *2631.7E+003 Ei:+13. YES 1. 1.0 0 0 6 

x NEGA'I'IUE E: T 
x OuE:RFL..OW Ei:'T' 
x YC)s:I":~vE E:T 
x ZEHC) E::T 

EXTERNAL.. UAKXAE3L.E: NAME I".QC:ATI: ON 

7962 
7970 
7954 

1.: 1 I 1  ~..0000000OE:+000 
t: 1 F' 0 49 SI. 1 04900000E+000 
SC% 3. S1 1. *04?00000E+000 

K 1 P 6 2 2 M I  S1 1. +62200000E-004 
1:2 si ~ + Q O O O O O O O E + O O ~  
MAXAREX E l 1  1 ~ 6 0 0 0 0 0 O O E + 0 0 3  
MXNAIIE A SI 5*0OOO00OOE+OO~. 

I W M  TR 

YES 
NO 
NO 
NO 
NO 
NO 
N cn 

SIZE LOCATION 

1 1 0 0 0 8  
1 I M - D A T A  
1 IN--DATA 
1 I M - D A T A  
1. I M - - D A T A  
1 I M - D A T A  
1 I M - - D A T A  

NAME: TYF:' LOCATION S I Z E  USED I T E M  L.IST 
............. I..." ..... - ........... - ..... -........- .................. " __._ ................._ """ ............................................ ".__" ...... ........................................................................ ". 

ACNG E; 1 10014 1 3. 1) XU: C O R E S I M + C + A C N $ O  
ADCC I-IN 13. 10400 32 1 1) CN: DATAl"'KLIC~F"t<1$3. 
ADCUAR s1 1 0 1 0 6  3 2 1 1 1 LU: UATRF'HOC F' AN%¶. 
AUNG s1 10060 1 1 1) XU: CORESIM+CIADN$D 
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I 
2 
I3 

2 6 



AN 
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N A M E  13'I'F' :I:(:: uAL..I.JI:.: 1-1 CII- 13 VAI_.I..J E:: s CAI ... r--,w x IIEY PU AI ... i...~ c n T:TI:IN 

Ac: N 0 + 0 0 0 0 0 E:+ 0 0 0 1 n o :I. l t  
ACNA !?:I. 0 + 0 0 0 0 0 EL+ 0 (1 I1 0 0 0 0 0 0 E+O 0 0 E::+ I 1. NC) 1 I. 0 0 26 

F:' F:' N 4. 0 0 0 0 + 0 0 0 0 I1 1. I. u 0 n A 
k-F:'NE: I. , 0 0 0 0 0 E 4- 0 0 (5 1 (1 0 I. 0 
d(:)E:D [:INE: TFWE I. 1 0 0 n 2 
IW:: .+ 0 0 0 I. , 0 0 0 0 0 1:: +. 0 0 0 E: .(. :I. Y E:S 1 10030 
HC>N + 0 0 0  o,ououoE:.t.o0u F:+y YES I. 1. 0 11 22 

" ...... -..- ..-......_ "".. I" ..-.. ............ .._".. ........ " .............. " .............. " ........ " .............. .... ............................. " .................................... 
$3 I. n 0 0 0 0 0 I;::.+. I1 0 0 E:.+. I. 0 YE:S I. 

ADN 0 a n , 11 0 o n o I. 1 (3 [I I. 

.+ 0 0 0 1 

x N[;:(:;n.r.:w:uf:: E:'T 
&'I' 
E:T 

x %El?Cl E:: T 

E:x'T'i:::l~cNAl ... uAR:X:AEi:I ... Ei: NAME: I...CICAT1ON 
_.... " ........ ................ ............ ." ..... 

79W? 
t3 (1 2 (5. 
79'94 
$3 I1 0 2 
(3 0 I. E3 
$3 0 I. 0 

7' y 1::. UAL-IJE! 
" - ............ 

F:' GL..CI E:A 1.. VAL-I.J I: 

Ei I. I. , 0 0 0 0 0 0 0 
s :I. I. , o 0 n n 

Ei :I. 
!ii 1 (:;I ... m : A I  ... u AI ... LIE 
!ii I. G I...(:K:A I... VAL ..ur< 
:I: :I. (;l...n I3Al ... u AI ... I..I 1:: 

5 t :.3 0 0 0 0 0 0 

5i:X:ZE: 
........... " ............. 

:I. 
I. 
I. 
1. 
I. 
:I. 
:I. 
:I. 
1. 
1. 
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NAMF: 

PRXVAL.. s 
TCN 
TRUE: 
W(:N 
X T O 2 8 5  7 
'%.ERO 

S C W  

"- ... .....," ."...""....̂ ...._ 
I Y F '  

$2 1 
E; 1 
E: 
E; 1. 
s :I. 
s 3. 
SI 

V AI ... LIE: 
" ......- " - ...... ........ "" ............ -1"" .".I. 

r;i ... nrm.. UAI ... CJEZ 
G LOE:Al... UAL.!.IE 
GI ... C)lii:Al ... UAI ... I J E Z  
G L..I3 E:AL.. uAl"uE: 
G I...CI E: A I." UA I...C)E 

o.o0000000E+oa0 
o . o 0 n [IO o o oE.:+n 00 

SCAI ... F'AC 
....,"..." ....................... "_.. 

B+1. 
B+1.3 
N13 NliZ 

E;: + E) 
E:+l  
B.t.0 

E:+10 

F'IIM TR 

N 0 
Y E 3  
N (:I 
Y E:: s 
N 0 
NO 
N (J 

.......... "_..I ......... 
p '  aXZE I...O[MTION 

2 I. 1.00til2 
3. I. u 1.24 
1 1. n:i.28 
1 10 12.5 

2 3. 10u313 
1, IM--UA7'A 
1 :fM.-UATh 

."_...._" ............................... ...._"_..".. 

EXEC F:'FZ:I:CIFZX'I'Y S%RYXCE SCRATC:I-l-F'AC)..-MEMC)F'~Y 
NAME: LEVEL. TASt:(S) EXEC /' TASK / MACIIO 

MA:KNS:IM + o NONE 0 0 2 
....- .............-- ""......-I"-. ................ ..__" .." I ........̂ ...... ... ..- .... .- I.".. .... ........ I"- .... ".. .......................... ".."_ -. 
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R'1'MF:'L. L..I[:STX.NG : DUALNUZZ 1.1./27/8*1 10 'W' 1.. . t "'.' ,.>A" 

x x m x m m m m m m x m x x x m x m m m  
X X 
X EXEC IJ'T AI3 1-.E STATEME N'T SEG ME: NT m 
X t , ,CORESIM CC:UMF:') X 

X X 

x x x x x m m x * x m x m x x x x m * x  

MAINSIN. I:ZCEI:I.JTIUE : DE:VI. : n n n o ~ t x ,  CI~I~IZS:LI.I  + SA 
.... " "_." ...... -" .........._.. .... --.. ................ _" ..... " ..... - .............. ............ 

2 7 0  
3 7 6 
1 I1 

3.80 
38 

44 

180 
3 8  

736 

3. Et 0 
3t3  

41 0 
458 
27 0 
1 &I 
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1.1 (:)I ... 1) (JA 1,,.1.. J 1::: !ii (::IC] I,.. F:'A (1: X l'<l!!: 1:' 1''' V 81 ... I...C) (y; A T I  ClN 
__. _. ...................................................... ............. ...................... - - .......................... ................ 

:I. (:I il 2 2 
3. 0 [I n b 
:I. I:) 1. i) 
3. [I 0 (! 2 

F A  1 . 3  1:: :I. 
:I. 
3. 
:I. 
3. 
3. 0 + 0 f! 0 (3 0 .+ (1 0 0 

........ 
U ($1 ... 1.11;: :;(:AI". F-AC 1:YW-l TI';; SI. 11:: l . . . ( l ( : ~ A . ~ ~ ~ ( : : l ~ . ~  

" ..... "." ........................................................................ ^ .......................... 
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1. 

:3 
4 

,'> 
1:. 

1:: 
\.I 

6 

7 

El  
z j ,  

I. 11 
:I. :I. 
:I. 2 
1.3 

2 h 



E:>( "E:: I? N AI ... v ARI:A E3 ... E: NAME:.: I...C)C:RT7:(:3N 

1. 
3. 
:I. 
3. 
1. 
:I. 
1. 
3. 
1 

2 3. 
1 

2 3. 
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Et:XE:C: 
I\! A MI;;: 

__. . .... ..,. __.. .._. .. , , .... .... .. ., .... .... .... .... .... .... .. .. .. .. .... - .. .... .... .... .... .... .... .... .... .... .... .. . . .... .... .... -- - .. .... . . . . .. .. .. .. .... .. , . , ... ... . . 
,... 

(:;(.)\::a\:;# .,_ \ ()("I:: _...,... 0 0 NCINE: 0 0 L!. 
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...; ,... ... 
s:, A:..,! 

,s:w 
:I. 6 

W:'E;:l:;; PINCX? S 1.11:: ,.JI: C;'T 'r 0 Ci:) iWi.!"f A T  :Ii:) I.4 A I... DE: l...~? Y C lii: XI '  M 1 3 4  5 
._ ........................ " _ ..................................... " .............. " -- ........................ ..- ..................... 

I>I.J[::'rS::CM 1::' * l:3..(: 
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I 
1. 
:I. 
:I. 

:I. 0 0 0 6 
I. (:I 0 :I. 0 
:I. (:I 0 n ::'? 
I. 0 0 :I. 4 

NC) 
N 0 
N C! 
N (YJ 
N CI 
Yl fS  
Y E!:!!; 
N 0 
N CI 
NO 
N CI 



1. 
2 
3 
*t 

e:- ... I 

7 
t3 
' j ,  

1.0 

1.1134 

.r1:<p4r4 ; ... ." "0 , I  ., :. I- I d \  Id::: I> v A l?::(:l9~~:l...l::!~ 
".." .................................................................. 

rq:: NC, I X C  

85 



I 

l::l:;g:<i')[i y,1;;:<::*;: \..-. )f.!li.:, ' -'I::*::; ._.... 
.. .. . _. , .... .... .... .... ... . .. .. .. .. .... .... .... .. .. .... .... 



87 





89 



Appendix C-Assembler Source Files for 
Dual-Nozzle Simulation 
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